Department of Medicine, Albert Einstein College of Medicine, Jacobi Medical Center, Bronx, NY, USA.
Johns Hopkins Ciccarone Center for the Prevention of Heart Diseases, Baltimore, USA.
BMC Cardiovasc Disord. 2019 Feb 27;19(1):47. doi: 10.1186/s12872-019-1024-4.
Left ventricular diastolic dysfunction has been shown to associate with increased risk of atrial fibrillation (AF). We aimed to examine the predictors of AF in individuals with preclinical diastolic dysfunction (PDD) - diastolic dysfunction without clinical heart failure - and develop a risk score in this population.
Patients underwent echocardiogram from December 2009 to December 2015 showing left ventricular ejection fraction (LVEF) ≥ 50% and grade 1 diastolic dysfunction, without clinical heart failure, valvular heart disease or AF were included. Outcome was defined as new onset AF. Cumulative probabilities were estimated and multivariable adjusted competing-risks regression analysis was performed to examine predictors of incident AF. A predictive score model was constructed.
A total of 9591 PDD patients (mean age 66, 41% men) of racial/ethnical diversity were included in the study. During a median follow-up of 54 months, 455 (4.7%) patients developed AF. Independent predictors of AF included advanced age, male sex, race, hypertension, diabetes, and peripheral artery disease. A risk score including these factors showed a Wolber's concordance index of 0.65 (0.63-0.68, p < 0.001), suggesting a good discrimination.
Our study revealed a set of predictors of AF in PDD patients. A simple risk score predicting AF in PDD was developed and internally validated. The scoring system could help clinical risk stratification, which may lead to prevention and early treatment strategies.
已有研究表明,左心室舒张功能障碍与心房颤动(AF)风险增加相关。我们旨在研究临床前舒张功能障碍(PDD)患者(即无心力衰竭临床症状的舒张功能障碍)的 AF 预测因素,并在此人群中建立风险评分。
本研究纳入了 2009 年 12 月至 2015 年 12 月期间行超声心动图检查、左心室射血分数(LVEF)≥50%且存在 1 级舒张功能障碍、无心力衰竭临床症状、瓣膜性心脏病或 AF 的患者。结局定义为新发 AF。采用累积概率估计和多变量调整竞争风险回归分析来评估新发 AF 的预测因素。构建预测评分模型。
本研究共纳入 9591 例 PDD 患者(平均年龄 66 岁,41%为男性),种族/民族多样性各异。中位随访 54 个月期间,455 例(4.7%)患者发生 AF。AF 的独立预测因素包括高龄、男性、种族、高血压、糖尿病和外周动脉疾病。包含这些因素的风险评分显示 Wolber 一致性指数为 0.65(0.63-0.68,p<0.001),提示具有良好的区分度。
本研究揭示了 PDD 患者 AF 的一组预测因素。我们建立了一种简单的预测 PDD 患者 AF 的风险评分,并对其进行了内部验证。该评分系统有助于临床风险分层,从而可能有助于制定预防和早期治疗策略。