Suppr超能文献

多射流管水母中的推进设计原理。

Propulsive design principles in a multi-jet siphonophore.

机构信息

Oregon Institute of Marine Biology, University of Oregon, Eugene, OR 97402, USA

Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA.

出版信息

J Exp Biol. 2019 Mar 27;222(Pt 6):jeb198242. doi: 10.1242/jeb.198242.

Abstract

Coordination of multiple propulsors can provide performance benefits in swimming organisms. Siphonophores are marine colonial organisms that orchestrate the motion of multiple swimming zooids for effective swimming. However, the kinematics at the level of individual swimming zooids (nectophores) have not been examined in detail. We used high-speed, high-resolution microvideography and particle image velocimetry of the physonect siphonophore to study the motion of the nectophores and the associated fluid motion during jetting and refilling. The integration of nectophore and velum kinematics allow for a high-speed (maximum ∼1 m s), narrow (1-2 mm) jet and rapid refill, as well as a 1:1 ratio of jetting to refill time. Scaled to the 3 mm nectophore length, jet speeds reach >300 lengths s Overall swimming performance is enhanced by velocity gradients produced in the nectophore during refill, which lead to a high-pressure region that produces forward thrust. Generating thrust during both the jet and refill phases augments the distance traveled by 17% over theoretical animals, which generate thrust only during the jet phase. The details of velum kinematics and associated fluid mechanics elucidate how siphonophores effectively navigate three-dimensional space, and could be applied to exit flow parameters in multijet underwater vehicles.

摘要

多推进器的协调可以为游泳生物提供性能优势。水螅是海洋群居生物,它们协调多个游动浮囊的运动以实现有效的游动。然而,单个游动浮囊(水螅体)的运动学尚未得到详细研究。我们使用高速、高分辨率微录像和射流物理水螅的粒子图像测速法来研究水螅体的运动以及射流和再填充过程中的相关流体运动。水螅体和膜翼运动的整合允许高速(最大约 1 m/s)、狭窄(1-2 mm)的射流和快速再填充,以及射流和再填充时间的 1:1 比例。按 3 毫米水螅体长缩放,射流速度达到>300 体长/s。在再填充过程中,水螅体产生的速度梯度提高了游泳性能,产生高压区域,从而产生向前的推力。在射流和再填充阶段都产生推力,使动物在理论上能够行进的距离增加 17%,而仅在射流阶段产生推力的动物则无法达到这一效果。膜翼运动学和相关流体力学的细节阐明了水螅如何有效地在三维空间中导航,这可能适用于多射流水下航行器的出口流动参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验