Suppr超能文献

使用基于智能手表的系统检测自闭症中的刻板运动行为

Detection of Stereotypical Motor Movements in Autism using a Smartwatch-based System.

作者信息

Sarker Hillol, Tam Allison, Foreman Morgan, Fay Nicholas, Dhuliawala Murtaza, Das Amar

机构信息

IBM Research, Cambridge, MA, USA.

出版信息

AMIA Annu Symp Proc. 2018 Dec 5;2018:952-960. eCollection 2018.

Abstract

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that is often accompanied by stereotypical motor movements. Health professionals typically assess the severity of these behaviors during therapy, which limits observations to a structured clinical setting. Recent advancements in ubiquitous computing and wearable sensors enable an ability to monitor these motor movements objectively and in real-time while children with ASD are in different environments. In this paper, we present a smartwatch-based system designed to detect stereotypical motor movements. To validate the feasibility ofour approach, we collected data from adults imitating example behaviors captured in YouTube videos of children with ASD, and we then evaluated several classification methods for accuracy. The best model can identify stereotypical motor activities of hand flapping, head banging, and repetitive dropping with 92.6% accuracy (precision 88.8% and recall 87.7%) in the presence of confounding play-type activities. We present the trade-offs between accuracy ofthe assessments and power consumption due to sensing from multiple modalities. Cross-participant validation shows that the results ofusing the model on an unknown subject are promising.

摘要

自闭症谱系障碍(ASD)是一种神经发育障碍,常伴有刻板运动行为。健康专业人员通常在治疗期间评估这些行为的严重程度,这将观察限制在结构化的临床环境中。普适计算和可穿戴传感器的最新进展使人们有能力在自闭症谱系障碍儿童处于不同环境时客观且实时地监测这些运动行为。在本文中,我们提出了一种基于智能手表的系统,旨在检测刻板运动行为。为了验证我们方法的可行性,我们从模仿自闭症谱系障碍儿童YouTube视频中捕捉到的示例行为的成年人那里收集数据,然后评估了几种分类方法的准确性。最佳模型在存在混淆的游戏类型活动的情况下,能够以92.6%的准确率(精确率88.8%,召回率87.7%)识别拍手、撞头和重复掉落等刻板运动活动。我们展示了评估准确性与多模态传感导致的功耗之间的权衡。跨参与者验证表明,在未知受试者上使用该模型的结果很有前景。

相似文献

9
The autism spectrum phenotype in ADNP syndrome.ADNP 综合征的自闭症谱系表型。
Autism Res. 2018 Sep;11(9):1300-1310. doi: 10.1002/aur.1980. Epub 2018 Aug 14.

本文引用的文献

2
Development of an Objective Autism Risk Index Using Remote Eye Tracking.利用远程眼动追踪技术开发客观自闭症风险指数
J Am Acad Child Adolesc Psychiatry. 2016 Apr;55(4):301-9. doi: 10.1016/j.jaac.2016.01.011. Epub 2016 Feb 4.
7
Robots for use in autism research.用于自闭症研究的机器人。
Annu Rev Biomed Eng. 2012;14:275-94. doi: 10.1146/annurev-bioeng-071811-150036. Epub 2012 May 9.
8
The triad of impairment in autism revisited.重新审视自闭症中的三联征障碍。
J Child Adolesc Psychiatr Nurs. 2009 Nov;22(4):189-93. doi: 10.1111/j.1744-6171.2009.00198.x.
10
Estimating mutual information.估计互信息。
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066138. doi: 10.1103/PhysRevE.69.066138. Epub 2004 Jun 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验