Abeysinghe Rashmie, Qu Xufeng, Cui Licong
Department of Computer Science, University of Kentucky, Lexington, KY.
Institute for Biomedical Informatics, University of Kentucky, Lexington, KY.
AMIA Annu Symp Proc. 2018 Dec 5;2018:1186-1195. eCollection 2018.
Non-Lattice Subgraphs (NLSs) are graph fragments of a terminology which violates the lattice property, a desirable property for a well-formed terminology. They have been proven to be useful in identifying inconsistencies in biomed-ical terminologies. Similar NLSs may denote similar inconsistencies that may suggest possibly similar remediations. Therefore, we investigate a structural-semantic-based approach to identify similar NLSs in the Gene Ontology (GO). For an input NLS, we first obtain all its isomorphic NLSs. Then, we compare each concept of the input NLS with the corresponding concept in an isomorphic NLS and then compute a similarity score for the two NLSs. Applying this approach to 10 different structures of NLSs in GO, we found that 38.43% (910/2368) of NLSs have at least one similar NLS. We also observed some interesting lexical patterns frequently existing in similar NLSs. Our approach may be applicable to other biomedical terminologies for identifying similar NLSs.
非格点子图(NLSs)是术语的图片段,该术语违反了格属性,而格属性是一个结构良好的术语所期望具备的属性。已证明它们在识别生物医学术语中的不一致性方面很有用。相似的非格点子图可能表示相似的不一致性,这可能暗示可能相似的补救措施。因此,我们研究一种基于结构语义的方法来识别基因本体(GO)中的相似非格点子图。对于输入的非格点子图,我们首先获取其所有同构的非格点子图。然后,我们将输入非格点子图的每个概念与同构非格点子图中的相应概念进行比较,然后计算这两个非格点子图的相似性得分。将此方法应用于基因本体中10种不同结构的非格点子图,我们发现38.43%(910/2368)的非格点子图至少有一个相似的非格点子图。我们还观察到相似非格点子图中经常存在一些有趣的词汇模式。我们的方法可能适用于其他生物医学术语以识别相似的非格点子图。