Suppr超能文献

评估电子牙科记录与医疗记录中记载的心血管疾病信息的一致性。

Assessing Information Congruence of Documented Cardiovascular Disease between Electronic Dental and Medical Records.

作者信息

Patel Jay, Mowery Danielle, Krishnan Anand, Thyvalikakath Thankam

机构信息

Indiana University School of Dentistry, Indianapolis, IN.

Department of Bio-Health Informatics, IUPUI School of Informatics and Computing, Indianapolis, IN.

出版信息

AMIA Annu Symp Proc. 2018 Dec 5;2018:1442-1450. eCollection 2018.

Abstract

Dentists are more often treating patients with Cardiovascular Diseases (CVD) in their clinics; therefore, dentists may need to alter treatment plans in the presence of CVD. However, it's unclear to what extent patient-reported CVD information is accurately captured in Electronic Dental Records (EDRs). In this pilot study, we aimed to measure the reliability of patient-reported CVD conditions in EDRs. We assessed information congruence by comparing patients' self-reported dental histories to their original diagnosis assigned by their medical providers in the Electronic Medical Record (EMR). To enable this comparison, we encoded patients CVD information from the free-text data of EDRs into a structured format using natural language processing (NLP). Overall, our NLP approach achieved promising performance extracting patients' CVD-related information. We observed disagreement between self-reported EDR data and physician-diagnosed EMR data.

摘要

牙医在其诊所中越来越频繁地治疗患有心血管疾病(CVD)的患者;因此,牙医可能需要在患者患有心血管疾病的情况下调整治疗计划。然而,目前尚不清楚电子牙科记录(EDR)中患者报告的心血管疾病信息被准确记录的程度。在这项试点研究中,我们旨在衡量电子牙科记录中患者报告的心血管疾病状况的可靠性。我们通过将患者自我报告的牙科病史与其在电子病历(EMR)中由医疗服务提供者指定的原始诊断进行比较,来评估信息的一致性。为了进行这种比较,我们使用自然语言处理(NLP)将电子牙科记录的自由文本数据中的患者心血管疾病信息编码为结构化格式。总体而言,我们的自然语言处理方法在提取患者的心血管疾病相关信息方面取得了令人满意的表现。我们观察到电子牙科记录的自我报告数据与医生诊断的电子病历数据之间存在不一致。

相似文献

2
4
A method for cohort selection of cardiovascular disease records from an electronic health record system.
Int J Med Inform. 2017 Jun;102:138-149. doi: 10.1016/j.ijmedinf.2017.03.015. Epub 2017 Mar 30.
5
Structuring electronic dental records through deep learning for a clinical decision support system.
Health Informatics J. 2021 Jan-Mar;27(1):1460458220980036. doi: 10.1177/1460458220980036.
8
Developing a cardiovascular disease risk factor annotated corpus of Chinese electronic medical records.
BMC Med Inform Decis Mak. 2017 Aug 8;17(1):117. doi: 10.1186/s12911-017-0512-7.

引用本文的文献

1
Prediction of Sjögren's disease diagnosis using matched electronic dental-health record data.
BMC Med Inform Decis Mak. 2024 Feb 9;24(1):43. doi: 10.1186/s12911-024-02448-9.
6
Developing Automated Computer Algorithms to Phenotype Periodontal Disease Diagnoses in Electronic Dental Records.
Methods Inf Med. 2022 Dec;61(S 02):e125-e133. doi: 10.1055/s-0042-1757880. Epub 2022 Nov 22.
7
Retrospective Study of the Reasons and Time Involved for Dental Providers' Medical Consults.
Front Digit Health. 2022 May 12;4:838538. doi: 10.3389/fdgth.2022.838538. eCollection 2022.
8
How Do Dental Clinicians Obtain Up-To-Date Patient Medical Histories? Modeling Strengths, Drawbacks, and Proposals for Improvements.
Front Digit Health. 2022 Mar 28;4:847080. doi: 10.3389/fdgth.2022.847080. eCollection 2022.
9
Health information exchange use during dental visits.
AMIA Annu Symp Proc. 2021 Jan 25;2020:1210-1219. eCollection 2020.
10
Cardiovascular informatics: building a bridge to data harmony.
Cardiovasc Res. 2022 Feb 21;118(3):732-745. doi: 10.1093/cvr/cvab067.

本文引用的文献

3
Oral health and cardiovascular care: Perceptions of people with cardiovascular disease.
PLoS One. 2017 Jul 20;12(7):e0181189. doi: 10.1371/journal.pone.0181189. eCollection 2017.
4
Dental considerations in cardiovascular patients: A practical perspective.
Indian Heart J. 2017 May-Jun;69(3):423-424. doi: 10.1016/j.ihj.2017.04.019. Epub 2017 May 16.
5
Ensembles of NLP Tools for Data Element Extraction from Clinical Notes.
AMIA Annu Symp Proc. 2017 Feb 10;2016:1880-1889. eCollection 2016.
6
Identifying Peripheral Arterial Disease Cases Using Natural Language Processing of Clinical Notes.
IEEE EMBS Int Conf Biomed Health Inform. 2016 Feb;2016:126-131. doi: 10.1109/BHI.2016.7455851. Epub 2016 Apr 21.
7
Detection of Cardiovascular Disease Risk's Level for Adults Using Naive Bayes Classifier.
Healthc Inform Res. 2016 Jul;22(3):196-205. doi: 10.4258/hir.2016.22.3.196. Epub 2016 Jul 31.
8
Periodontitis prevalence in adults ≥ 65 years of age, in the USA.
Periodontol 2000. 2016 Oct;72(1):76-95. doi: 10.1111/prd.12145.
9
Congestive heart failure information extraction framework for automated treatment performance measures assessment.
J Am Med Inform Assoc. 2017 Apr 1;24(e1):e40-e46. doi: 10.1093/jamia/ocw097.
10
Authorship for Leading Journals: Issue on Ethical Problems.
AJR Am J Roentgenol. 2016 Apr;206(4):W61. doi: 10.2214/AJR.15.15825.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验