Department of Biostatistics and Health Data Science, Indiana University Richard M. Fairbanks School of Public Health, 410 W. 10th Street, Indianapolis, IN, 46202, USA.
Department of Dental Public Health and Dental Informatics, Indiana University School of Dentistry, 1121 W. Michigan Street, Indianapolis, IN, 46202, USA.
BMC Med Inform Decis Mak. 2024 Feb 9;24(1):43. doi: 10.1186/s12911-024-02448-9.
Sjögren's disease (SD) is an autoimmune disease that is difficult to diagnose early due to its wide spectrum of clinical symptoms and overlap with other autoimmune diseases. SD potentially presents through early oral manifestations prior to showing symptoms of clinically significant dry eyes or dry mouth. We examined the feasibility of utilizing a linked electronic dental record (EDR) and electronic health record (EHR) dataset to identify factors that could be used to improve early diagnosis prediction of SD in a matched case-control study population.
EHR data, including demographics, medical diagnoses, medication history, serological test history, and clinical notes, were retrieved from the Indiana Network for Patient Care database and dental procedure data were retrieved from the Indiana University School of Dentistry EDR. We examined EHR and EDR history in the three years prior to SD diagnosis for SD cases and the corresponding period in matched non-SD controls. Two conditional logistic regression (CLR) models were built using Least Absolute Shrinkage and Selection Operator regression. One used only EHR data and the other used both EHR and EDR data. The ability of these models to predict SD diagnosis was assessed using a concordance index designed for CLR.
We identified a sample population of 129 cases and 371 controls with linked EDR-EHR data. EHR factors associated with an increased risk of SD diagnosis were the usage of lubricating throat drugs with an odds ratio (OR) of 14.97 (2.70-83.06), dry mouth (OR = 6.19, 2.14-17.89), pain in joints (OR = 2.54, 1.34-4.76), tear film insufficiency (OR = 27.04, 5.37-136.), and rheumatoid factor testing (OR = 6.97, 1.94-25.12). The addition of EDR data slightly improved model concordance compared to the EHR only model (0.834 versus 0.811). Surgical dental procedures (OR = 2.33, 1.14-4.78) were found to be associated with an increased risk of SD diagnosis while dental diagnostic procedures (OR = 0.45, 0.20-1.01) were associated with decreased risk.
Utilizing EDR data alongside EHR data has the potential to improve prediction models for SD. This could improve the early diagnosis of SD, which is beneficial to slowing or preventing complications of SD.
干燥综合征(Sjögren's disease,SD)是一种自身免疫性疾病,由于其广泛的临床症状谱和与其他自身免疫性疾病的重叠,早期诊断较为困难。SD 可能先出现口腔早期表现,然后才出现临床上有意义的眼干或口干症状。我们通过匹配病例对照研究人群中的电子病历(EHR)和电子牙科记录(EDR)数据集,探讨利用该数据集识别相关因素来提高 SD 早期诊断预测的可行性。
从印第安纳州患者护理网络数据库中提取 EHR 数据,包括人口统计学信息、医疗诊断、药物治疗史、血清学检测史和临床记录,从印第安纳大学牙科学院 EDR 中提取牙科手术数据。我们检查了 SD 病例在 SD 诊断前的三年内和匹配的非 SD 对照组的同期 EHR 和 EDR 病史。使用最小绝对收缩和选择算子回归建立了两个条件逻辑回归(CLR)模型,一个仅使用 EHR 数据,另一个同时使用 EHR 和 EDR 数据。使用为 CLR 设计的一致性指数评估这些模型预测 SD 诊断的能力。
我们确定了 129 例病例和 371 例匹配的对照患者的 EDR-EHR 数据。与 SD 诊断风险增加相关的 EHR 因素包括使用润喉药物的几率(OR)为 14.97(2.70-83.06)、口干(OR=6.19,2.14-17.89)、关节痛(OR=2.54,1.34-4.76)、泪膜不足(OR=27.04,5.37-136)和类风湿因子检测(OR=6.97,1.94-25.12)。与仅使用 EHR 数据的模型相比,添加 EDR 数据略微提高了模型一致性(0.834 对 0.811)。发现牙科手术程序(OR=2.33,1.14-4.78)与 SD 诊断风险增加相关,而牙科诊断程序(OR=0.45,0.20-1.01)与风险降低相关。
利用 EDR 数据和 EHR 数据相结合,有可能改善 SD 预测模型。这可能有助于提高 SD 的早期诊断,从而有助于减缓或预防 SD 的并发症。