Suppr超能文献

基于超声图像模式识别的肩袖撕裂定量诊断。

Quantitative diagnosis of rotator cuff tears based on sonographic pattern recognition.

机构信息

Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.

Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.

出版信息

PLoS One. 2019 Feb 28;14(2):e0212741. doi: 10.1371/journal.pone.0212741. eCollection 2019.

Abstract

The lifetime prevalence of shoulder pain is nearly 70% and is mostly attributable to subacromial disorders. A rotator cuff tear is the most severe form of subacromial disorders, and most occur in the supraspinatus. For clinical examination, shoulder ultrasound is recommended to detect supraspinatus tears. In this study, a computer-aided tear classification (CTC) system was developed to identify supraspinatus tears in ultrasound examinations and reduce inter-operator variability. The observed cases included 89 ultrasound images of supraspinatus tendinopathy and 102 of supraspinatus tear from 136 patients. For each case, intensity and texture features were extracted from the entire lesion and combined in a binary logistic regression classifier for lesion classification. The proposed CTC system achieved an accuracy rate of 92% (176/191) and an area under receiver operating characteristic curve (Az) of 0.9694. Based on its diagnostic performance, the CTC system has promise for clinical use.

摘要

肩痛的终身患病率接近 70%,主要归因于肩峰下疾病。肩袖撕裂是肩峰下疾病最严重的形式,大多数发生在冈上肌。对于临床检查,推荐使用肩部超声来检测冈上肌撕裂。在这项研究中,开发了一种计算机辅助撕裂分类(CTC)系统,用于识别超声检查中的冈上肌撕裂并减少操作者间的变异性。观察病例包括 136 名患者的 89 张冈上肌肌腱病和 102 张冈上肌撕裂的超声图像。对于每个病例,从整个病变中提取强度和纹理特征,并组合在二进制逻辑回归分类器中进行病变分类。所提出的 CTC 系统的准确率为 92%(176/191),受试者工作特征曲线下面积(Az)为 0.9694。基于其诊断性能,CTC 系统有望在临床上使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0fd/6394937/539ca2e62890/pone.0212741.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验