School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4BW, U.K.
Biochem J. 2019 Feb 28;476(4):699-703. doi: 10.1042/BCJ20190017.
The ability of opportunistic pathogens such as Group A (GAS) to transition between mucosal colonisation and invasive disease requires complex systems for adapting to markedly different host environments. The battle to acquire essential trace metals such as manganese and iron from the host is central to pathogenesis. Using a molecular genetic approach, Turner et al. [Biochem. J. (2019) , 595-611] show that it is not just individual metal concentrations that are important, but the ratio of iron to manganese within cells. Increasing this ratio by knocking out , encoding the Fe(II) exporter PmtA, or by disrupting , encoding an MtsABC Mn(II)-import system component, led to reductions in superoxide dismutase (SodA) activity and increased sensitivity to oxidative stress. The authors show that SodA is at least 4-fold more active with Mn bound than with Fe and speculate that high intracellular Fe:Mn ratios reduce superoxide dismutase activity through the mismetalation of SodA. Challenging wild-type GAS with 1 mM HO led to a decrease in Fe:Mn ratio and a 3-fold increase in SodA activity, indicating that modulation of the balance between intracellular Fe and Mn may play an important role in adaptation to oxidative stress. This work unravels some of the key mechanisms for maintaining appropriate Mn and Fe concentrations within bacterial cells and underscores the need for future studies that take an holistic view to metal ion homeostasis in bacteria. Strategies aimed at interfering with the balance of intracellular metal ions represent a promising approach for the control of invasive microbial infections.
机会性病原体(如 A 组链球菌(GAS))在黏膜定植和侵袭性疾病之间转变的能力需要适应宿主明显不同环境的复杂系统。从宿主中获取必需痕量金属(如锰和铁)的竞争是发病机制的核心。特纳等人 [生物化学杂志(2019 年),595-611] 采用分子遗传学方法表明,重要的不仅是个体金属浓度,还有细胞内铁与锰的比例。通过敲除或编码 Fe(II)外排蛋白 PmtA,或破坏编码 MtsABC Mn(II)导入系统组件的编码基因来增加该比例,导致超氧化物歧化酶(SodA)活性降低和对氧化应激的敏感性增加。作者表明,Mn 结合的 SodA 比 Fe 结合的 SodA 至少活跃 4 倍,并推测高细胞内 Fe:Mn 比通过 SodA 的错配位降低超氧化物歧化酶活性。用 1mM HO 挑战野生型 GAS 会导致 Fe:Mn 比值降低和 SodA 活性增加 3 倍,表明调节细胞内 Fe 和 Mn 之间的平衡可能在适应氧化应激中发挥重要作用。这项工作揭示了维持细菌细胞内适当 Mn 和 Fe 浓度的一些关键机制,并强调需要进行未来的研究,以全面了解细菌中的金属离子稳态。旨在干扰细胞内金属离子平衡的策略代表了控制侵袭性微生物感染的有前途的方法。