Suppr超能文献

稻壳生物炭存在下sp. IA对脂肽抗生素生产的促进作用。

Promotion of lipopeptide antibiotic production by sp. IA in the presence of rice husk biochar.

作者信息

Ebe Shohei, Ohike Tatsuya, Matsukawa Tetsuya, Okanami Masahiro, Kajiyama Shin'ichiro, Ano Takashi

机构信息

Division of Biotechnological Science, Graduate School of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan.

出版信息

J Pestic Sci. 2019 Feb 20;44(1):33-40. doi: 10.1584/jpestics.D18-042.

Abstract

The purpose of this study is to isolate the beneficial microorganisms whose growth is promoted in the presence of charcoal materials. We successfully isolated strain IA, whose growth is promoted on an agar plate with charcoal materials, and identified it as a novel strain of the sp. The growth of strain IA in the liquid medium was promoted by the addition of both activated charcoal (AC) and rice husk biochar (RHB). Moreover, the sporulation of strain IA in the RHB medium and the antifungal activity of the culture supernatant of the RHB medium were much higher than those with AC. HPLC and MS analyses revealed that strain IA produced an antifungal lipopeptide iturin A, and the yield of iturin A in the RHB medium was 8 times higher than that in the medium without RHB. This is the first paper to describe the positive effect of RHB on microbial metabolisms.

摘要

本研究的目的是分离出在木炭材料存在下生长得到促进的有益微生物。我们成功分离出了菌株IA,其在含有木炭材料的琼脂平板上生长得到促进,并将其鉴定为 sp. 的一个新菌株。在液体培养基中,添加活性炭(AC)和稻壳生物炭(RHB)均能促进菌株IA的生长。此外,菌株IA在RHB培养基中的孢子形成以及RHB培养基培养上清液的抗真菌活性均远高于添加AC的情况。高效液相色谱(HPLC)和质谱(MS)分析表明,菌株IA产生了一种抗真菌脂肽伊枯草菌素A,且RHB培养基中伊枯草菌素A的产量比无RHB培养基中的产量高8倍。本文首次描述了RHB对微生物代谢的积极影响。

相似文献

1
Promotion of lipopeptide antibiotic production by sp. IA in the presence of rice husk biochar.
J Pestic Sci. 2019 Feb 20;44(1):33-40. doi: 10.1584/jpestics.D18-042.
2
Components of rice husk biochar in promoting the growth, sporulation and iturin A production of Bacillus sp. strain IA.
Z Naturforsch C J Biosci. 2019 Jul 26;74(7-8):211-217. doi: 10.1515/znc-2018-0223.
3
Biochar derived from rice husk: Impact on soil enzyme and microbial dynamics, lettuce growth, and toxicity.
Chemosphere. 2024 Feb;349:140868. doi: 10.1016/j.chemosphere.2023.140868. Epub 2023 Dec 3.
5
Persulfate activation with rice husk-based magnetic biochar for degrading PAEs in marine sediments.
Environ Sci Pollut Res Int. 2019 Nov;26(33):33781-33790. doi: 10.1007/s11356-018-2423-2. Epub 2018 Jun 4.
6
Removal of methylene blue dye using rice husk, cow dung and sludge biochar: Characterization, application, and kinetic studies.
Bioresour Technol. 2020 Jun;306:123202. doi: 10.1016/j.biortech.2020.123202. Epub 2020 Mar 16.
7
Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol.
Sci Total Environ. 2018 Sep 1;634:561-568. doi: 10.1016/j.scitotenv.2018.03.380. Epub 2018 Apr 7.
8
Antifungal activity of endophytic Bacillus safensis B21 and its potential application as a biopesticide to control rice blast.
Pestic Biochem Physiol. 2020 Jan;162:69-77. doi: 10.1016/j.pestbp.2019.09.003. Epub 2019 Sep 11.
9
Coculture of and Based on Metabolic Cross-Feeding Modulates Lipopeptide Production.
Microorganisms. 2022 May 20;10(5):1059. doi: 10.3390/microorganisms10051059.
10
Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.
Chemosphere. 2016 Jan;142:4-13. doi: 10.1016/j.chemosphere.2015.05.084. Epub 2015 Jun 6.

本文引用的文献

1
The positive effects of Mn on nitrogen use and surfactin production by ATCC 21332.
Biotechnol Biotechnol Equip. 2015 Mar 4;29(2):381-389. doi: 10.1080/13102818.2015.1006905. Epub 2015 Feb 12.
2
Biochar amendment to soil changes dissolved organic matter content and composition.
Chemosphere. 2016 Jan;142:100-5. doi: 10.1016/j.chemosphere.2015.04.087. Epub 2015 May 13.
3
Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: A review.
Bioresour Technol. 2015 Jun;185:386-98. doi: 10.1016/j.biortech.2015.02.063. Epub 2015 Feb 20.
4
Humification characterization of biochar and its potential as a composting amendment.
J Environ Sci (China). 2014 Feb 1;26(2):390-7. doi: 10.1016/s1001-0742(13)60421-0.
5
Bacillus fermentation of soybeans.
World J Microbiol Biotechnol. 1993 May;9(3):295-9. doi: 10.1007/BF00383066.
6
Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed.
Microb Biotechnol. 2011 Jul;4(4):523-32. doi: 10.1111/j.1751-7915.2011.00253.x. Epub 2011 Mar 1.
7
Bacillus siamensis sp. nov., isolated from salted crab (poo-khem) in Thailand.
Int J Syst Evol Microbiol. 2010 Oct;60(Pt 10):2364-2370. doi: 10.1099/ijs.0.018879-0. Epub 2009 Nov 20.
8
Laboratory strains of Bacillus subtilis do not exhibit swarming motility.
J Bacteriol. 2009 Nov;191(22):7129-33. doi: 10.1128/JB.00905-09. Epub 2009 Sep 11.
9
Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens.
J Appl Microbiol. 2010 Feb;108(2):386-95. doi: 10.1111/j.1365-2672.2009.04438.x. Epub 2009 Jun 25.
10
Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis.
Lett Appl Microbiol. 2008 Sep;47(3):180-6. doi: 10.1111/j.1472-765X.2008.02412.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验