Wang Wenliang, Li Yuan, Zheng Yulin, Li Xiaochan, Huang Liegen, Li Guoqiang
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
Guangdong Choicore Optoelectronics Co., Ltd., Heyuan, 517003, China.
Small. 2019 Apr;15(14):e1802995. doi: 10.1002/smll.201802995. Epub 2019 Feb 28.
2D group-III nitride materials have shown a great promise for applications in optoelectronic devices thanks to their thickness-dependent properties. However, the epitaxial growth of 2D group-III nitrides remains a challenge. In this work, epitaxial growth of 2D GaN with well-controlled lattice structures and bandgaps is achieved by plasma-enhanced metal organic chemical vapor deposition via effective regulation of plasma energy and growth temperature. The structure of graphene/2D GaN/Si heterostructures is carefully investigated by high-resolution transmission electron microscopy. The formation mechanism of the 2D GaN layer is clearly clarified by theoretical calculations. Furthermore, a bandgap for 2D GaN ranging from ≈4.18 to ≈4.65 eV varying with the numbers of layers is theoretically calculated and experimentally confirmed. 2D GaN with well-controlled lattice structure and bandgap holds great potential for the development of deep ultraviolet light-emitting diodes, energy conversion devices, etc.
由于其与厚度相关的特性,二维III族氮化物材料在光电器件应用中显示出巨大的潜力。然而,二维III族氮化物的外延生长仍然是一个挑战。在这项工作中,通过有效调节等离子体能量和生长温度,利用等离子体增强金属有机化学气相沉积实现了具有良好控制的晶格结构和带隙的二维GaN的外延生长。通过高分辨率透射电子显微镜仔细研究了石墨烯/二维GaN/硅异质结构的结构。通过理论计算清楚地阐明了二维GaN层的形成机制。此外,理论计算并实验证实了二维GaN的带隙随层数变化,范围约为4.18至约4.65电子伏特。具有良好控制的晶格结构和带隙的二维GaN在深紫外发光二极管、能量转换器件等的发展中具有巨大潜力。