Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland.
Genentech, Inc., San Francisco, California, United States.
Invest Ophthalmol Vis Sci. 2019 Mar 1;60(4):852-857. doi: 10.1167/iovs.18-25634.
To develop deep learning (DL) models for the automatic detection of optical coherence tomography (OCT) measures of diabetic macular thickening (MT) from color fundus photographs (CFPs).
Retrospective analysis on 17,997 CFPs and their associated OCT measurements from the phase 3 RIDE/RISE diabetic macular edema (DME) studies. DL with transfer-learning cascade was applied on CFPs to predict time-domain OCT (TD-OCT)-equivalent measures of MT, including central subfield thickness (CST) and central foveal thickness (CFT). MT was defined by using two OCT cutoff points: 250 μm and 400 μm. A DL regression model was developed to directly quantify the actual CFT and CST from CFPs.
The best DL model was able to predict CST ≥ 250 μm and CFT ≥ 250 μm with an area under the curve (AUC) of 0.97 (95% confidence interval [CI], 0.89-1.00) and 0.91 (95% CI, 0.76-0.99), respectively. To predict CST ≥ 400 μm and CFT ≥ 400 μm, the best DL model had an AUC of 0.94 (95% CI, 0.82-1.00) and 0.96 (95% CI, 0.88-1.00), respectively. The best deep convolutional neural network regression model to quantify CST and CFT had an R2 of 0.74 (95% CI, 0.49-0.91) and 0.54 (95% CI, 0.20-0.87), respectively. The performance of the DL models declined when the CFPs were of poor quality or contained laser scars.
DL is capable of predicting key quantitative TD-OCT measurements related to MT from CFPs. The DL models presented here could enhance the efficiency of DME diagnosis in tele-ophthalmology programs, promoting better visual outcomes. Future research is needed to validate DL algorithms for MT in the real-world.
开发深度学习 (DL) 模型,以便从眼底彩色照片 (CFP) 自动检测糖尿病性黄斑增厚 (MT) 的光学相干断层扫描 (OCT) 测量值。
对来自 3 期 RIDE/RISE 糖尿病性黄斑水肿 (DME) 研究的 17997 张 CFP 及其相关 OCT 测量值进行回顾性分析。应用具有迁移学习级联的 DL 对 CFP 进行分析,以预测时域 OCT(TD-OCT)等效的 MT 测量值,包括中心视网膜神经纤维层厚度 (CST) 和中心黄斑厚度 (CFT)。使用两个 OCT 截断值定义 MT:250μm 和 400μm。开发了一个 DL 回归模型,以便直接从 CFP 定量计算实际 CFT 和 CST。
最佳 DL 模型能够以 0.97(95%置信区间 [CI],0.89-1.00)和 0.91(95%CI,0.76-0.99)的曲线下面积 (AUC) 分别预测 CST≥250μm 和 CFT≥250μm。为了预测 CST≥400μm 和 CFT≥400μm,最佳 DL 模型的 AUC 分别为 0.94(95%CI,0.82-1.00)和 0.96(95%CI,0.88-1.00)。用于定量 CST 和 CFT 的最佳深度卷积神经网络回归模型的 R2 分别为 0.74(95%CI,0.49-0.91)和 0.54(95%CI,0.20-0.87)。当 CFP 质量较差或包含激光疤痕时,DL 模型的性能会下降。
DL 能够从 CFP 预测与 MT 相关的关键定量 TD-OCT 测量值。本文提出的 DL 模型可以提高远程眼科计划中 DME 诊断的效率,从而改善视力预后。需要进一步的研究来验证现实世界中 MT 的 DL 算法。