Suppr超能文献

对过去十年中用于视网膜疾病的人工智能研究热点和新兴趋势的深入分析。

In-depth analysis of research hotspots and emerging trends in AI for retinal diseases over the past decade.

作者信息

Guo Mingkai, Gong Di, Yang Weihua

机构信息

The Third School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China.

Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China.

出版信息

Front Med (Lausanne). 2024 Nov 20;11:1489139. doi: 10.3389/fmed.2024.1489139. eCollection 2024.

Abstract

BACKGROUND

The application of Artificial Intelligence (AI) in diagnosing retinal diseases represents a significant advancement in ophthalmological research, with the potential to reshape future practices in the field. This study explores the extensive applications and emerging research frontiers of AI in retinal diseases.

OBJECTIVE

This study aims to uncover the developments and predict future directions of AI research in retinal disease over the past decade.

METHODS

This study analyzes AI utilization in retinal disease research through articles, using citation data sourced from the Web of Science (WOS) Core Collection database, covering the period from January 1, 2014, to December 31, 2023. A combination of WOS analyzer, CiteSpace 6.2 R4, and VOSviewer 1.6.19 was used for a bibliometric analysis focusing on citation frequency, collaborations, and keyword trends from an expert perspective.

RESULTS

A total of 2,861 articles across 93 countries or regions were cataloged, with notable growth in article numbers since 2017. China leads with 926 articles, constituting 32% of the total. The United States has the highest h-index at 66, while England has the most significant network centrality at 0.24. Notably, the University of London is the leading institution with 99 articles and shares the highest h-index (25) with University College London. The National University of Singapore stands out for its central role with a score of 0.16. Research primarily spans ophthalmology and computer science, with "network," "transfer learning," and "convolutional neural networks" being prominent burst keywords from 2021 to 2023.

CONCLUSION

China leads globally in article counts, while the United States has a significant research impact. The University of London and University College London have made significant contributions to the literature. Diabetic retinopathy is the retinal disease with the highest volume of research. AI applications have focused on developing algorithms for diagnosing retinal diseases and investigating abnormal physiological features of the eye. Future research should pivot toward more advanced diagnostic systems for ophthalmic diseases.

摘要

背景

人工智能(AI)在视网膜疾病诊断中的应用是眼科研究的一项重大进展,有可能重塑该领域未来的实践。本研究探讨了AI在视网膜疾病中的广泛应用和新兴研究前沿。

目的

本研究旨在揭示过去十年AI在视网膜疾病研究中的发展情况,并预测未来方向。

方法

本研究通过文章分析AI在视网膜疾病研究中的应用,使用来自科学网(WOS)核心合集数据库的引文数据,涵盖2014年1月1日至2023年12月31日期间。结合使用WOS分析器、CiteSpace 6.2 R4和VOSviewer 1.6.19进行文献计量分析,从专家角度关注引文频率、合作情况和关键词趋势。

结果

共收录了来自93个国家或地区的2861篇文章,自2017年以来文章数量显著增长。中国以926篇文章位居榜首,占总数的32%。美国的h指数最高,为66,而英国的网络中心性最为显著,为0.24。值得注意的是,伦敦大学是领先机构,有99篇文章,并与伦敦大学学院共享最高h指数(25)。新加坡国立大学以0.16的得分在其中发挥核心作用。研究主要涵盖眼科和计算机科学,“网络”“迁移学习”和“卷积神经网络”是2021年至2023年突出的突发关键词。

结论

中国在文章数量上全球领先,而美国具有重大研究影响力。伦敦大学和伦敦大学学院对文献做出了重大贡献。糖尿病视网膜病变是研究数量最多的视网膜疾病。AI应用主要集中在开发视网膜疾病诊断算法和研究眼睛的异常生理特征。未来的研究应转向更先进的眼科疾病诊断系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdca/11614663/632ca8698445/fmed-11-1489139-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验