Suppr超能文献

磁共振指纹成像的部分容积映射。

Partial volume mapping using magnetic resonance fingerprinting.

机构信息

Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.

Radiology, Case Western Reserve University, Cleveland, OH, USA.

出版信息

NMR Biomed. 2019 May;32(5):e4082. doi: 10.1002/nbm.4082. Epub 2019 Mar 1.

Abstract

Magnetic resonance fingerprinting (MRF) is a quantitative imaging technique that maps multiple tissue properties through pseudorandom signal excitation and dictionary-based reconstruction. The aim of this study is to estimate and validate partial volumes from MRF signal evolutions (PV-MRF), and to characterize possible sources of error. Partial volume model inversion (pseudoinverse) and dictionary-matching approaches to calculate brain tissue fractions (cerebrospinal fluid, gray matter, white matter) were compared in a numerical phantom and seven healthy subjects scanned at 3 T. Results were validated by comparison with ground truth in simulations and ROI analysis in vivo. Simulations investigated tissue fraction errors arising from noise, undersampling artifacts, and model errors. An expanded partial volume model was investigated in a brain tumor patient. PV-MRF with dictionary matching is robust to noise, and estimated tissue fractions are sensitive to model errors. A 6% error in pure tissue T resulted in average absolute tissue fraction error of 4% or less. A partial volume model within these accuracy limits could be semi-automatically constructed in vivo using k-means clustering of MRF-mapped relaxation times. Dictionary-based PV-MRF robustly identifies pure white matter, gray matter and cerebrospinal fluid, and partial volumes in subcortical structures. PV-MRF could also estimate partial volumes of solid tumor and peritumoral edema. We conclude that PV-MRF can attribute subtle changes in relaxation times to altered tissue composition, allowing for quantification of specific tissues which occupy a fraction of a voxel.

摘要

磁共振指纹成像(MRF)是一种定量成像技术,通过伪随机信号激发和基于字典的重建来绘制多种组织特性。本研究旨在估计和验证 MRF 信号演化的部分体积(PV-MRF),并对可能的误差源进行特征描述。在数值体模和 7 名 3T 扫描的健康受试者中,比较了部分体积模型反演(伪逆)和字典匹配方法来计算脑组织结构分数(脑脊液、灰质、白质)。通过仿真中的真值比较和体内 ROI 分析对结果进行验证。模拟研究了来自噪声、欠采样伪影和模型误差的组织分数误差。在脑肿瘤患者中还研究了扩展的部分体积模型。基于字典匹配的 PV-MRF 对噪声具有鲁棒性,并且估计的组织分数对模型误差敏感。纯组织 T 出现 6%的误差会导致平均绝对组织分数误差小于或等于 4%。在此精度范围内的部分体积模型可以使用 MRF 映射的弛豫时间的 K-均值聚类在体内半自动构建。基于字典的 PV-MRF 可以稳健地识别纯白质、灰质和脑脊液,以及皮质下结构中的部分体积。PV-MRF 还可以估计实体瘤和瘤周水肿的部分体积。我们得出结论,PV-MRF 可以将弛豫时间的细微变化归因于组织成分的改变,从而能够定量分析占据体素一部分的特定组织。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验