Photon Science Institute, School of Physics & Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom.
Martin-Luther-Universität Halle-Wittenberg, Institute of Physics, 06099 Halle/Saale, Germany.
Phys Rev Lett. 2019 Feb 8;122(5):053204. doi: 10.1103/PhysRevLett.122.053204.
A single-atom "double-slit" experiment is realized by photoionizing rubidium atoms using two independent low power lasers. The photoelectron wave of well-defined energy recedes to the continuum either from the 5P or 6P states in the same atom, resulting in two-path interference imaged in the far field using a photoelectron detector. Even though the lasers are independent and not phase locked, the transitions within the atom impart the phase relationship necessary for interference. The experiment is designed so that either 5P or 6P states are excited by one laser, before ionization by the second beam. The measurement cannot determine which excitation path is taken, resulting in interference in wave-vector space analogous to Young's double-slit studies. As the lasers are tunable in both frequency and intensity, the individual excitation-ionization pathways can be varied, allowing dynamic control of the interference term. Since the electron wave recedes in the Coulomb potential of the residual ion, a quantum model is used to capture the dynamics. Excellent agreement is found between theory and experiment.
通过使用两个独立的低功率激光器将铷原子光电离,实现了单原子“双缝”实验。具有明确定义能量的光电子波从同一原子的 5P 或 6P 态退回到连续谱,从而在远场中使用光电子探测器对双路径干涉进行成像。尽管激光器是独立的且没有锁定相位,但原子内部的跃迁赋予了干涉所需的相位关系。实验设计为通过第二束激光进行光电离之前,用一个激光激发 5P 或 6P 态。测量无法确定采用哪种激发路径,从而在类似于杨氏双缝研究的波矢空间中产生干涉。由于激光器在频率和强度上都是可调谐的,因此可以改变单个激发-电离途径,从而实现干涉项的动态控制。由于电子波在残余离子的库仑势中退去,因此使用量子模型来捕获动力学。理论和实验之间存在极好的一致性。