Suppr超能文献

深度学习架构中的量子纠缠。

Quantum Entanglement in Deep Learning Architectures.

机构信息

The Hebrew University of Jerusalem, 9190401 Israel.

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540, USA.

出版信息

Phys Rev Lett. 2019 Feb 15;122(6):065301. doi: 10.1103/PhysRevLett.122.065301.

Abstract

Modern deep learning has enabled unprecedented achievements in various domains. Nonetheless, employment of machine learning for wave function representations is focused on more traditional architectures such as restricted Boltzmann machines (RBMs) and fully connected neural networks. In this Letter, we establish that contemporary deep learning architectures, in the form of deep convolutional and recurrent networks, can efficiently represent highly entangled quantum systems. By constructing tensor network equivalents of these architectures, we identify an inherent reuse of information in the network operation as a key trait which distinguishes them from standard tensor network-based representations, and which enhances their entanglement capacity. Our results show that such architectures can support volume-law entanglement scaling, polynomially more efficiently than presently employed RBMs. Thus, beyond a quantification of the entanglement capacity of leading deep learning architectures, our analysis formally motivates a shift of trending neural-network-based wave function representations closer to the state-of-the-art in machine learning.

摘要

现代深度学习在各个领域取得了前所未有的成就。然而,机器学习在波函数表示方面的应用主要集中在更传统的架构上,如受限玻尔兹曼机(RBM)和全连接神经网络。在这封信中,我们证明了现代深度学习架构(如深度卷积和递归网络)可以有效地表示高度纠缠的量子系统。通过构建这些架构的张量网络等效形式,我们确定了网络操作中信息的固有重用是一个关键特征,它将它们与基于标准张量网络的表示区分开来,并增强了它们的纠缠能力。我们的结果表明,这种架构可以支持体积律纠缠标度,比目前使用的 RBM 效率高出多项式级。因此,除了对领先的深度学习架构的纠缠容量进行量化之外,我们的分析还从形式上证明了基于神经网络的波函数表示向机器学习的最新进展的转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验