Suppr超能文献

使用共轭特征对偶的深度受限核机器

Deep Restricted Kernel Machines Using Conjugate Feature Duality.

作者信息

Suykens Johan A K

机构信息

KU Leuven ESAT-STADIUS, B-3001 Leuven, Belgium

出版信息

Neural Comput. 2017 Aug;29(8):2123-2163. doi: 10.1162/NECO_a_00984. Epub 2017 May 31.

Abstract

The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.

摘要

这封信的目的是提出一种深度受限核机器理论,为基于核机器的深度学习提供新的基础。从深度学习的角度来看,它与受限玻尔兹曼机部分相关,受限玻尔兹曼机的特征是在一个没有隐藏层到隐藏层连接的二分图中有可见单元和隐藏单元,以及作为深度信念网络和深度玻尔兹曼机的深度学习扩展。从核机器的角度来看,它包括用于分类和回归的最小二乘支持向量机、核主成分分析(PCA)、矩阵奇异值分解和Parzen型模型。一个关键要素是首先根据所谓的共轭特征对偶性来刻画这些核机器,从而得到一个具有可见单元和隐藏单元的表示。展示了这如何与受限玻尔兹曼机中的能量形式相关,在非概率设置中有连续变量。在这个所谓的受限核机器(RKM)表示的新框架中,对偶变量对应于隐藏特征。深度RKM是通过耦合RKM得到的。针对由一个最小二乘支持向量机回归层和两个核PCA层组成的三层深度RKM对该方法进行了说明。在其原始形式中,深度前馈神经网络也可以在这个框架内进行训练。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验