Department of Nuclear Medicine, Seoul National University, Seoul, Republic of Korea; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
Department of Nuclear Medicine, Seoul National University, Seoul, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.
Phys Med. 2019 Feb;58:32-39. doi: 10.1016/j.ejmp.2019.01.003. Epub 2019 Jan 18.
We propose a multi-atlas based segmentation method for cardiac PET and SPECT images to deal with the high variability of tracer uptake characteristics in myocardium. In addition, we verify its performance by comparing it to the manual segmentation and single-atlas based approach, using dynamic myocardial PET.
Twelve left coronary artery ligated SD rats underwent ([F]fluoropentyl) triphenylphosphonium salt PET/CT scans. Atlas-based segmentation is based on the spatial normalized template with pre-defined region-of-interest (ROI) for each anatomical or functional structure. To generate multiple left ventricular (LV) atlases, each LV image was segmented manually and divided into angular segments. The segmentation methods performances were compared in regional count information using leave-one-out cross-validation. Additionally, the polar-maps of kinetic parameters were estimated.
In all images, the highest r template yielded the lowest root-mean-square error (RMSE) between the source image and the best-matching templates ranged between 0.91-0.97 and 0.06-0.11, respectively. The single-atlas and multi-atlas based ROIs yielded remarkably different perfusion distributions: only the multi-atlas based segmentation showed equivalent high correlation results (r = 0.92) with the manual segmentation compared with the single-atlas based (r = 0.88). The high perfusion value underestimation was remarkable in single-atlas based segmentation.
The main advantage of the proposed multi-atlas based cardiac segmentation method is that it does not require any prior information on the tracer distribution to be incorporated into the image segmentation algorithms. Therefore, the same procedure suggested here is applicable to any other cardiac PET or SPECT imaging agents without modification.
我们提出了一种基于多图谱的心脏 PET 和 SPECT 图像分割方法,以处理心肌示踪剂摄取特征的高度可变性。此外,我们通过与手动分割和基于单图谱的方法进行比较,使用动态心肌 PET 来验证其性能。
12 只结扎左冠状动脉的 SD 大鼠进行了[F]氟戊基三苯基膦盐 PET/CT 扫描。基于图谱的分割是基于具有预定义感兴趣区(ROI)的空间归一化模板。为了生成多个左心室(LV)图谱,手动分割每个 LV 图像,并将其分为角段。使用留一法交叉验证比较了分割方法在区域计数信息方面的性能。此外,还估计了动力学参数的极图。
在所有图像中,最高 r 模板在源图像和最佳匹配模板之间产生的均方根误差(RMSE)最低,范围在 0.91-0.97 和 0.06-0.11 之间。单图谱和多图谱的 ROI 产生了明显不同的灌注分布:只有多图谱的分割方法与手动分割方法相比,与基于单图谱的方法相比,具有更高的相关性(r=0.92)。单图谱的分割方法显著低估了高灌注值。
所提出的基于多图谱的心脏分割方法的主要优点是,它不需要将任何关于示踪剂分布的先验信息纳入图像分割算法中。因此,这里提出的相同程序可应用于任何其他心脏 PET 或 SPECT 成像剂,无需修改。