Department of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning, China.
Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China.
Int J Comput Assist Radiol Surg. 2019 Mar;14(3):473-482. doi: 10.1007/s11548-018-1879-3. Epub 2018 Nov 2.
Automated segmentation of torso organs from positron emission tomography/computed tomography (PET/CT) images is a prerequisite step for nuclear medicine image analysis. However, accurate organ segmentation from clinical PET/CT is challenging due to the poor soft tissue contrast in the low-dose CT image and the low spatial resolution of the PET image. To overcome these challenges, we developed a multi-atlas segmentation (MAS) framework for torso organ segmentation from 2-deoxy-2-[F]fluoro-D-glucose PET/CT images.
Our key idea is to use PET information to compensate for the imperfect CT contrast and use surface-based atlas fusion to overcome the low PET resolution. First, all the organs are segmented from CT using a conventional MAS method, and then the abdomen region of the PET image is automatically cropped. Focusing on the cropped PET image, a refined MAS segmentation of the abdominal organs is performed, using a surface-based atlas fusion approach to reach subvoxel accuracy.
This method was validated based on 69 PET/CT images. The Dice coefficients of the target organs were between 0.80 and 0.96, and the average surface distances were between 1.58 and 2.44 mm. Compared to the CT-based segmentation, the PET-based segmentation gained a Dice increase of 0.06 and an ASD decrease of 0.38 mm. The surface-based atlas fusion leads to significant accuracy improvement for the liver and kidneys and saved ~ 10 min computation time compared to volumetric atlas fusion.
The presented method achieves better segmentation accuracy than conventional MAS method within acceptable computation time for clinical applications.
从正电子发射断层扫描/计算机断层扫描(PET/CT)图像中自动分割躯干器官是核医学图像分析的前提步骤。然而,由于低剂量 CT 图像中的软组织对比度差和 PET 图像的空间分辨率低,准确地从临床 PET/CT 中分割器官具有挑战性。为了克服这些挑战,我们开发了一种从 2-脱氧-2-[F]氟-D-葡萄糖 PET/CT 图像中进行躯干器官分割的多图谱分割(MAS)框架。
我们的主要思路是利用 PET 信息来弥补 CT 对比度不理想的问题,并使用基于表面的图谱融合来克服 PET 分辨率低的问题。首先,使用常规 MAS 方法从 CT 中分割所有器官,然后自动裁剪 PET 图像的腹部区域。针对裁剪后的 PET 图像,使用基于表面的图谱融合方法进行腹部器官的精细 MAS 分割,以达到亚像素精度。
该方法基于 69 个 PET/CT 图像进行了验证。目标器官的 Dice 系数在 0.80 到 0.96 之间,平均表面距离在 1.58 到 2.44 毫米之间。与 CT 分割相比,基于 PET 的分割可获得 0.06 的 Dice 增加和 0.38 毫米的 ASD 减少。与体积图谱融合相比,基于表面的图谱融合可显著提高肝脏和肾脏的准确性,并节省约 10 分钟的计算时间。
与常规 MAS 方法相比,该方法在可接受的计算时间内实现了更好的分割准确性,适用于临床应用。