Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.
Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan.
J Cell Biol. 2019 May 6;218(5):1511-1530. doi: 10.1083/jcb.201811090. Epub 2019 Mar 1.
Although chromatin organization and dynamics play a critical role in gene transcription, how they interplay remains unclear. To approach this issue, we investigated genome-wide chromatin behavior under various transcriptional conditions in living human cells using single-nucleosome imaging. While transcription by RNA polymerase II (RNAPII) is generally thought to need more open and dynamic chromatin, surprisingly, we found that active RNAPII globally constrains chromatin movements. RNAPII inhibition or its rapid depletion released the chromatin constraints and increased chromatin dynamics. Perturbation experiments of P-TEFb clusters, which are associated with active RNAPII, had similar results. Furthermore, chromatin mobility also increased in resting G0 cells and UV-irradiated cells, which are transcriptionally less active. Our results demonstrated that chromatin is globally stabilized by loose connections through active RNAPII, which is compatible with models of classical transcription factories or liquid droplet formation of transcription-related factors. Together with our computational modeling, we propose the existence of loose chromatin domain networks for various intra-/interchromosomal contacts via active RNAPII clusters/droplets.
尽管染色质的组织和动态在基因转录中起着至关重要的作用,但它们之间的相互作用仍不清楚。为了解决这个问题,我们使用单核小体成像技术,在活的人类细胞中研究了各种转录条件下的全基因组染色质行为。虽然人们普遍认为 RNA 聚合酶 II(RNAPII)的转录需要更开放和动态的染色质,但令人惊讶的是,我们发现活跃的 RNAPII 全局限制了染色质的运动。RNAPII 的抑制或快速耗竭释放了染色质的限制,并增加了染色质的动力学。与活跃的 RNAPII 相关的 P-TEFb 簇的扰动实验也得到了类似的结果。此外,静止的 G0 细胞和受紫外线照射的细胞(转录活性较低)的染色质流动性也增加。我们的结果表明,染色质通过活跃的 RNAPII 通过松散的连接而全局稳定,这与经典转录工厂或与转录相关因子的液滴形成模型是一致的。结合我们的计算模型,我们提出了通过活跃的 RNAPII 簇/液滴存在用于各种核内/核间接触的松散染色质域网络的存在。