Maeshima Kazuhiro
Genome Dynamics Laboratory, National Institute of Genetics, ROIS.
Graduate Institute for Advanced Studies, SOKENDAI.
Proc Jpn Acad Ser B Phys Biol Sci. 2025 Jun 11;101(6):339-356. doi: 10.2183/pjab.101.020. Epub 2025 Jun 5.
The organization and dynamics of chromatin are critical for genome functions such as transcription and DNA replication/repair. Historically, chromatin was assumed to fold into the 30-nm fiber and progressively arrange into larger helical structures, as described in the textbook model. However, over the past 15 years, extensive evidence including our studies has dramatically transformed the view of chromatin from a static, regular structure to one that is more variable and dynamic. In higher eukaryotic cells, chromatin forms condensed yet liquid-like domains, which appear to be the basic unit of chromatin structure, replacing the 30-nm fiber. These domains maintain proper accessibility, ensuring the regulation of DNA reaction processes. During mitosis, these domains assemble to form more gel-like mitotic chromosomes, which are further constrained by condensins and other factors. Based on the available evidence, I discuss the physical properties of chromatin in live cells, emphasizing its viscoelastic nature-balancing local fluidity with global stability to support genome functions.
染色质的组织和动态变化对于转录、DNA复制/修复等基因组功能至关重要。从历史上看,染色质被认为会折叠成30纳米的纤维,并逐步排列成更大的螺旋结构,正如教科书中的模型所描述的那样。然而,在过去的15年里,包括我们的研究在内的大量证据极大地改变了人们对染色质的看法,从一个静态、规则的结构转变为一个更具变化性和动态性的结构。在高等真核细胞中,染色质形成浓缩但类似液体的结构域,这些结构域似乎是染色质结构的基本单位,取代了30纳米的纤维。这些结构域保持适当的可及性,确保DNA反应过程的调控。在有丝分裂期间,这些结构域组装形成更像凝胶的有丝分裂染色体,它们会受到凝聚素和其他因素的进一步限制。基于现有证据,我讨论了活细胞中染色质的物理特性,强调其粘弹性本质——在局部流动性和整体稳定性之间取得平衡以支持基因组功能。