Sandia National Laboratories, Livermore, CA, 94551, USA.
Sci Rep. 2019 Mar 1;9(1):3268. doi: 10.1038/s41598-019-39195-1.
The human eye is an exquisite photodetection system with the ability to detect single photons. The process of vision is initiated by single-photon absorption in the molecule retinal, triggering a cascade of complex chemical processes that eventually lead to the generation of an electrical impulse. Here, we analyze the single-photon detection prospects for an architecture inspired by the human eye: field-effect transistors employing carbon nanotubes functionalized with chromophores. We employ non-equilibrium quantum transport simulations of realistic devices to reveal device response upon absorption of a single photon. We establish the parameters that determine the strength of the response such as the magnitude and orientation of molecular dipole(s), as well as the arrangements of chromophores on carbon nanotubes. Moreover, we show that functionalization of a single nanotube with multiple chromophores allows for number resolution, whereby the number of photons in an incoming light packet can be determined. Finally, we assess the performance prospects by calculating the dark count rate, and we identify the most promising architectures and regimes of operation.
人眼是一种精密的光电检测系统,具有探测单光子的能力。视觉过程是由分子视紫红质中单光子的吸收引发的,触发一系列复杂的化学过程,最终导致电脉冲的产生。在这里,我们分析了受人类眼睛启发的架构的单光子探测前景:采用官能化碳纳米管的场效应晶体管。我们利用实际器件的非平衡量子输运模拟揭示了吸收单个光子后的器件响应。我们确定了决定响应强度的参数,例如分子偶极子的大小和方向,以及碳纳米管上的生色团排列。此外,我们表明,用多个生色团官能化单根碳纳米管可以实现对数量的分辨,从而可以确定输入光包中的光子数量。最后,我们通过计算暗计数率来评估性能前景,并确定最有前途的架构和工作模式。