Suppr超能文献

阿尔茨海默病白质连接的连接组学网络分析。

Connectome-wide network analysis of white matter connectivity in Alzheimer's disease.

机构信息

Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, Guangdong Province, China; Peng Cheng Laboratory, Shenzhen, Guangdong, China.

The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.

出版信息

Neuroimage Clin. 2019;22:101690. doi: 10.1016/j.nicl.2019.101690. Epub 2019 Feb 21.

Abstract

A multivariate analytical strategy may pinpoint the structural connectivity patterns associated with Alzheimer's disease (AD) pathology in connectome-wide association studies. Diffusion magnetic resonance imaging data from 161 participants including subjects with healthy controls, AD, stable and converting mild cognitive impairment, were selected for group-wise comparisons. A multivariate distance matrix regression (MDMR) analysis was performed to detect abnormality in brain structural network along with disease progression. Based on the seed regions returned by the MDMR analysis, supervised learning was applied to evaluate the disease predictive performance. Nine brain regions, including the left orbital part of superior and middle frontal gyrus, the bilateral supplementary motor area, the bilateral insula, the left hippocampus, the left putamen, and the left thalamus demonstrated extremely significant structural pattern changes along with the progression of AD. The disease classification was more efficient when based on the key connectivity related to these seed regions than when based on whole-brain structural connectivity. MDMR analysis reveals brain network reorganization caused by AD pathology. The key structural connectivity detected in this study exhibits promising distinguishing capability to predict prodromal AD patients.

摘要

一种多变量分析策略可能会在连接组全关联研究中确定与阿尔茨海默病(AD)病理相关的结构连接模式。选择了包括健康对照组、AD、稳定和转化性轻度认知障碍患者在内的 161 名参与者的扩散磁共振成像数据进行组间比较。进行了多变量距离矩阵回归(MDMR)分析,以检测大脑结构网络随疾病进展的异常。基于 MDMR 分析返回的种子区域,应用监督学习来评估疾病的预测性能。在 AD 进展过程中,有 9 个脑区,包括左侧额上、中回眶部,双侧辅助运动区,双侧岛叶,左侧海马体、左侧壳核和左侧丘脑,表现出极其显著的结构模式变化。基于与这些种子区域相关的关键连通性进行疾病分类比基于全脑结构连通性进行疾病分类更为有效。MDMR 分析揭示了 AD 病理引起的大脑网络重组。本研究中检测到的关键结构连通性具有预测前驱 AD 患者的有前途的鉴别能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a43/6396432/39cffb27a2f7/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验