Suppr超能文献

使用神经心理学数据预测轻度认知障碍向痴呆症的进展:一种使用时间窗的监督学习方法。

Predicting progression of mild cognitive impairment to dementia using neuropsychological data: a supervised learning approach using time windows.

作者信息

Pereira Telma, Lemos Luís, Cardoso Sandra, Silva Dina, Rodrigues Ana, Santana Isabel, de Mendonça Alexandre, Guerreiro Manuela, Madeira Sara C

机构信息

Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.

INESC-ID, Lisbon, Portugal.

出版信息

BMC Med Inform Decis Mak. 2017 Jul 19;17(1):110. doi: 10.1186/s12911-017-0497-2.

Abstract

BACKGROUND

Predicting progression from a stage of Mild Cognitive Impairment to dementia is a major pursuit in current research. It is broadly accepted that cognition declines with a continuum between MCI and dementia. As such, cohorts of MCI patients are usually heterogeneous, containing patients at different stages of the neurodegenerative process. This hampers the prognostic task. Nevertheless, when learning prognostic models, most studies use the entire cohort of MCI patients regardless of their disease stages. In this paper, we propose a Time Windows approach to predict conversion to dementia, learning with patients stratified using time windows, thus fine-tuning the prognosis regarding the time to conversion.

METHODS

In the proposed Time Windows approach, we grouped patients based on the clinical information of whether they converted (converter MCI) or remained MCI (stable MCI) within a specific time window. We tested time windows of 2, 3, 4 and 5 years. We developed a prognostic model for each time window using clinical and neuropsychological data and compared this approach with the commonly used in the literature, where all patients are used to learn the models, named as First Last approach. This enables to move from the traditional question "Will a MCI patient convert to dementia somewhere in the future" to the question "Will a MCI patient convert to dementia in a specific time window".

RESULTS

The proposed Time Windows approach outperformed the First Last approach. The results showed that we can predict conversion to dementia as early as 5 years before the event with an AUC of 0.88 in the cross-validation set and 0.76 in an independent validation set.

CONCLUSIONS

Prognostic models using time windows have higher performance when predicting progression from MCI to dementia, when compared to the prognostic approach commonly used in the literature. Furthermore, the proposed Time Windows approach is more relevant from a clinical point of view, predicting conversion within a temporal interval rather than sometime in the future and allowing clinicians to timely adjust treatments and clinical appointments.

摘要

背景

预测从轻度认知障碍阶段发展为痴呆症是当前研究的主要目标。人们普遍认为,认知功能在轻度认知障碍和痴呆症之间呈连续性下降。因此,轻度认知障碍患者队列通常具有异质性,包含处于神经退行性变过程不同阶段的患者。这给预后任务带来了阻碍。然而,在学习预后模型时,大多数研究使用整个轻度认知障碍患者队列,而不考虑他们的疾病阶段。在本文中,我们提出一种时间窗方法来预测向痴呆症的转化,即根据时间窗对患者进行分层学习,从而针对转化时间对预后进行微调。

方法

在所提出的时间窗方法中,我们根据患者在特定时间窗内是否转化(转化型轻度认知障碍)或仍为轻度认知障碍(稳定型轻度认知障碍)的临床信息对患者进行分组。我们测试了2年、3年、4年和5年的时间窗。我们使用临床和神经心理学数据为每个时间窗开发了一个预后模型,并将这种方法与文献中常用的方法(即使用所有患者来学习模型,称为“首次末次”方法)进行比较。这使得我们能够从传统问题“轻度认知障碍患者未来某个时候会转化为痴呆症吗”转变为问题“轻度认知障碍患者会在特定时间窗内转化为痴呆症吗”。

结果

所提出的时间窗方法优于“首次末次”方法。结果表明,我们可以在事件发生前5年就预测到向痴呆症的转化,在交叉验证集中AUC为0.88,在独立验证集中为0.76。

结论

与文献中常用的预后方法相比,使用时间窗的预后模型在预测从轻度认知障碍向痴呆症的进展时具有更高的性能。此外,所提出的时间窗方法从临床角度来看更具相关性,它预测的是在一个时间间隔内的转化,而不是未来某个时候的转化,并且允许临床医生及时调整治疗和临床预约。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f02e/5517828/1ee750bebb11/12911_2017_497_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验