Tachibana Shizuko, Chen Chao, Zhang Oliver R, Schurr Sarah V, Hill Cameron, Li Ruixia, Manso Ana M, Zhang Jianlin, Andreyev Aleksander, Murphy Anne N, Ross Robert S, Cho Yoshitake
Division of Cardiology, Department of Medicine, University of California San Diego.
Department of Pharmacology, University of California San Diego.
J Vis Exp. 2019 Feb 13(144). doi: 10.3791/59052.
Mitochondria and oxidative metabolism are critical for maintaining cardiac muscle function. Research has shown that mitochondrial dysfunction is an important contributing factor to impaired cardiac function found in heart failure. By contrast, restoring defective mitochondrial function may have beneficial effects to improve cardiac function in the failing heart. Therefore, studying the regulatory mechanisms and identifying novel regulators for mitochondrial function could provide insight which could be used to develop new therapeutic targets for treating heart disease. Here, cardiac myocyte mitochondrial respiration is analyzed using a unique cell culture system. First, a protocol has been optimized to rapidly isolate and culture high viability neonatal mouse cardiomyocytes. Then, a 96-well format extracellular flux analyzer is used to assess the oxygen consumption rate of these cardiomyocytes. For this protocol, we optimized seeding conditions and demonstrated that neonatal mouse cardiomyocytes oxygen consumption rate can be easily assessed in an extracellular flux analyzer. Finally, we note that our protocol can be applied to a larger culture size and other studies, such as intracellular signaling and contractile function analysis.
线粒体与氧化代谢对于维持心肌功能至关重要。研究表明,线粒体功能障碍是心力衰竭中心脏功能受损的一个重要促成因素。相比之下,恢复有缺陷的线粒体功能可能对改善衰竭心脏的心脏功能具有有益作用。因此,研究线粒体功能的调控机制并鉴定新的线粒体功能调节因子,可为开发治疗心脏病的新治疗靶点提供思路。在此,使用独特的细胞培养系统分析心肌细胞线粒体呼吸。首先,优化了一种方案以快速分离并培养高活力的新生小鼠心肌细胞。然后,使用96孔板细胞外流量分析仪评估这些心肌细胞的耗氧率。对于该方案,我们优化了接种条件,并证明在细胞外流量分析仪中可以轻松评估新生小鼠心肌细胞的耗氧率。最后,我们指出我们的方案可应用于更大的培养规模以及其他研究,如细胞内信号传导和收缩功能分析。