Suppr超能文献

将纳米纤维素和聚乳酸连续加工成多层阻隔涂层。

Continuous Processing of Nanocellulose and Polylactic Acid into Multilayer Barrier Coatings.

机构信息

Laboratory of Paper Coating and Converting, Center for Functional Materials , Åbo Akademi University , 20500 Turku , Finland.

Paper Converting and Packaging , Tampere University of Technology , 33100 Tampere , Finland.

出版信息

ACS Appl Mater Interfaces. 2019 Mar 27;11(12):11920-11927. doi: 10.1021/acsami.9b00922. Epub 2019 Mar 13.

Abstract

Recent years have seen an increased interest toward utilizing biobased and biodegradable materials for barrier packaging applications. Most of the abovementioned materials usually have certain shortcomings that discourage their adoption as a preferred material of choice. Nanocellulose falls into such a category. It has excellent barrier against grease, mineral oils, and oxygen but poor tolerance against water vapor, which makes it unsuitable to be used at high humidity. In addition, nanocellulose suspensions' high viscosity and yield stress already at low solid content and poor adhesion to substrates create additional challenges for high-speed processing. Polylactic acid (PLA) is another potential candidate that has reasonably high tolerance against water vapor but rather a poor barrier against oxygen. The current work explores the possibility of combining both these materials into thin multilayer coatings onto a paperboard. A custom-built slot-die was used to coat either microfibrillated cellulose or cellulose nanocrystals onto a pigment-coated baseboard in a continuous process. These were subsequently coated with PLA using a pilot-scale extrusion coater. Low-density polyethylene was used as for reference extrusion coating. Cationic starch precoating and corona treatment improved the adhesion at nanocellulose/baseboard and nanocellulose/PLA interfaces, respectively. The water vapor transmission rate for nanocellulose + PLA coatings remained lower than that of the control PLA coating, even at a high relative humidity of 90% (38 °C). The multilayer coating had 98% lower oxygen transmission rate compared to just the PLA-coated baseboard, and the heptane vapor transmission rate reduced by 99% in comparison to the baseboard. The grease barrier for nanocellulose + PLA coatings increased 5-fold compared to nanocellulose alone and 2-fold compared to PLA alone. This approach of processing nanocellulose and PLA into multiple layers utilizing slot-die and extrusion coating in tandem has the potential to produce a barrier packaging paper that is both 100% biobased and biodegradable.

摘要

近年来,人们越来越关注利用生物基和可生物降解材料来应用于阻隔包装。上述大多数材料通常都有一定的缺点,这使得它们无法被作为首选材料而被广泛采用。纳米纤维素就属于这种情况。它具有出色的油脂、矿物油和氧气阻隔性能,但对水蒸气的阻隔性较差,这使得它不适合在高湿度环境下使用。此外,纳米纤维素悬浮液的高粘度和屈服应力,即使在低固含量下,以及对基底较差的附着力,这给高速加工带来了额外的挑战。聚乳酸(PLA)是另一种具有较高水蒸气容忍度但氧气阻隔性较差的潜在候选材料。本工作探索了将这两种材料结合到纸板上的薄多层涂层中的可能性。使用定制的狭缝模头,在连续过程中将微原纤化纤维素或纤维素纳米晶涂覆到颜料涂覆的基板上。随后,使用中试挤出涂布机在这些基底上涂覆 PLA。低密度聚乙烯被用作参考挤出涂布。阳离子淀粉预涂覆和电晕处理分别改善了纳米纤维素/基板和纳米纤维素/PLA界面的附着力。纳米纤维素+PLA 涂层的水蒸气透过率仍低于对照 PLA 涂层,即使在相对湿度高达 90%(38°C)的情况下也是如此。与仅涂覆 PLA 的基板相比,多层涂层的氧气透过率降低了 98%,与基板相比,正庚烷蒸气透过率降低了 99%。与单独的纳米纤维素相比,纳米纤维素+PLA 涂层的油脂阻隔性增加了 5 倍,与单独的 PLA 相比增加了 2 倍。这种利用狭缝模头和挤出涂布机串联加工纳米纤维素和 PLA 的多层方法,有可能生产出 100%生物基和可生物降解的阻隔包装纸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd6a/6727189/b29df06569d0/am-2019-00922c_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验