Suppr超能文献

一项多中心前瞻性队列研究的研究方案,旨在确定老年急诊患者不良结局的预测因素(风险分层在急诊急性病老年患者(RISE UP)研究)。

Study protocol for a multicentre prospective cohort study to identify predictors of adverse outcome in older medical emergency department patients (the Risk Stratification in the Emergency Department in Acutely Ill Older Patients (RISE UP) study).

机构信息

Department of Internal Medicine and Gastroenterology, Zuyderland Medical Centre, Heerlen, the Netherlands.

CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht University, Maastricht, the Netherlands.

出版信息

BMC Geriatr. 2019 Mar 4;19(1):65. doi: 10.1186/s12877-019-1078-2.

Abstract

BACKGROUND

Older patients (≥65 years old) experience high rates of adverse outcomes after an emergency department (ED) visit. Reliable tools to predict adverse outcomes in this population are lacking. This manuscript comprises a study protocol for the Risk Stratification in the Emergency Department in Acutely Ill Older Patients (RISE UP) study that aims to identify predictors of adverse outcome (including triage- and risk stratification scores) and intends to design a feasible prediction model for older patients that can be used in the ED.

METHODS

The RISE UP study is a prospective observational multicentre cohort study in older (≥65 years of age) ED patients treated by internists or gastroenterologists in Zuyderland Medical Centre and Maastricht University Medical Centre+ in the Netherlands. After obtaining informed consent, patients characteristics, vital signs, functional status and routine laboratory tests will be retrieved. In addition, disease perception questionnaires will be filled out by patients or their caregivers and clinical impression questionnaires by nurses and physicians. Moreover, both arterial and venous blood samples will be taken in order to determine additional biomarkers. The discriminatory value of triage- and risk stratification scores, clinical impression scores and laboratory tests will be evaluated. Univariable logistic regression will be used to identify predictors of adverse outcomes. With these data we intend to develop a clinical prediction model for 30-day mortality using multivariable logistic regression. This model will be validated in an external cohort. Our primary endpoint is 30-day all-cause mortality. The secondary (composite) endpoint consist of 30-day mortality, length of hospital stay, admission to intensive- or medium care units, readmission and loss of independent living. Patients will be followed up for at least 30 days and, if possible, for one year.

DISCUSSION

In this study, we will retrieve a broad range of data concerning adverse outcomes in older patients visiting the ED with medical problems. We intend to develop a clinical tool for identification of older patients at risk of adverse outcomes that is feasible for use in the ED, in order to improve clinical decision making and medical care.

TRIAL REGISTRATION

Retrospectively registered on clinicaltrials.gov ( NCT02946398 ; 9/20/2016).

摘要

背景

老年患者(≥65 岁)在急诊科就诊后会出现较高的不良结局发生率。目前缺乏可靠的工具来预测此类人群的不良结局。本文介绍了一项研究方案,即风险分层在急诊科急性疾病老年患者(RISE UP)研究,旨在确定不良结局的预测指标(包括分诊和风险分层评分),并旨在为急诊科的老年患者设计一个可行的预测模型。

方法

RISE UP 研究是一项在荷兰 Zuyderland 医疗中心和马斯特里赫特大学医学中心+的内科和胃肠病科医生治疗的老年(≥65 岁)急诊科患者的前瞻性观察性多中心队列研究。获得知情同意后,将检索患者的特征、生命体征、功能状态和常规实验室检查。此外,将由患者或其护理人员填写疾病感知问卷,由护士和医生填写临床印象问卷。此外,还将采集动脉和静脉血样以确定其他生物标志物。将评估分诊和风险分层评分、临床印象评分和实验室检查的鉴别价值。将使用单变量逻辑回归来确定不良结局的预测因素。根据这些数据,我们打算使用多变量逻辑回归为 30 天死亡率开发一个临床预测模型。该模型将在外部队列中进行验证。我们的主要终点是 30 天全因死亡率。次要(复合)终点包括 30 天死亡率、住院时间、入住重症监护或中等护理单位、再入院和丧失独立生活能力。患者将至少随访 30 天,如果可能,随访 1 年。

讨论

在这项研究中,我们将检索与急诊科就诊的患有医疗问题的老年患者不良结局相关的广泛数据。我们打算开发一种用于识别有不良结局风险的老年患者的临床工具,该工具可在急诊科使用,以改善临床决策和医疗护理。

试验注册

在 clinicaltrials.gov 上进行回顾性注册(NCT02946398;2016 年 9 月 20 日)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf5f/6399878/67554fbef0fa/12877_2019_1078_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验