Suppr超能文献

基于外淋巴 microRNA 表达谱的机器学习预测感音神经性听力损失。

Using Machine Learning to Predict Sensorineural Hearing Loss Based on Perilymph Micro RNA Expression Profile.

机构信息

University of Kansas School of Medicine, Department of Otolaryngology-Head and Neck Surgery, Kansas City, KS, USA.

University of Kansas School of Medicine, Kansas City, KS, USA.

出版信息

Sci Rep. 2019 Mar 4;9(1):3393. doi: 10.1038/s41598-019-40192-7.

Abstract

Hearing loss (HL) is the most common neurodegenerative disease worldwide. Despite its prevalence, clinical testing does not yield a cell or molecular based identification of the underlying etiology of hearing loss making development of pharmacological or molecular treatments challenging. A key to improving the diagnosis of inner ear disorders is the development of reliable biomarkers for different inner ear diseases. Analysis of microRNAs (miRNA) in tissue and body fluid samples has gained significant momentum as a diagnostic tool for a wide variety of diseases. In previous work, we have shown that miRNA profiling in inner ear perilymph is feasible and may demonstrate distinctive miRNA expression profiles unique to different diseases. A first step in developing miRNAs as biomarkers for inner ear disease is linking patterns of miRNA expression in perilymph to clinically available metrics. Using machine learning (ML), we demonstrate we can build disease specific algorithms that predict the presence of sensorineural hearing loss using only miRNA expression profiles. This methodology not only affords the opportunity to understand what is occurring on a molecular level, but may offer an approach to diagnosing patients with active inner ear disease.

摘要

听力损失(HL)是全球最常见的神经退行性疾病。尽管其发病率很高,但临床检测并未发现导致听力损失的细胞或分子基础,这使得开发药理学或分子治疗方法具有挑战性。改善内耳疾病诊断的关键是为不同的内耳疾病开发可靠的生物标志物。组织和体液样本中 microRNA(miRNA)的分析已成为各种疾病诊断工具的重要手段。在之前的工作中,我们已经证明,在内耳外淋巴中进行 miRNA 分析是可行的,并且可能显示出与不同疾病独特相关的独特 miRNA 表达谱。将 miRNA 作为内耳疾病生物标志物开发的第一步是将外淋巴中 miRNA 的表达模式与临床可用的指标联系起来。我们使用机器学习(ML)证明,我们可以仅使用 miRNA 表达谱构建针对特定疾病的算法来预测感音神经性听力损失的存在。这种方法不仅提供了了解分子水平上发生情况的机会,而且还可能为诊断患有活动性内耳疾病的患者提供一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3828/6399453/7684b6a060f9/41598_2019_40192_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验