Suppr超能文献

监测三链 DNA 中鸟嘌呤自由基阳离子的结构相关反应途径:去质子化与水合。

Monitoring the Structure-Dependent Reaction Pathways of Guanine Radical Cations in Triplex DNA: Deprotonation Versus Hydration.

机构信息

Beijing National Laboratory for Molecular Science, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.

University of Chinese Academy of Sciences , Beijing 100049 , China.

出版信息

J Phys Chem B. 2019 Apr 4;123(13):2853-2863. doi: 10.1021/acs.jpcb.9b00608. Epub 2019 Mar 20.

Abstract

Exposure of DNA to one-electron oxidants leads initially to the formation of guanine radical cations (G), which may degrade by deprotonation or hydration and ultimately cause strand breaks or 8-oxoG lesions. As the structure is dramatically changed by binding of the third strand in the major groove of the target duplex, it makes the triplex an interesting DNA structure to be examined and compared with the duplex on the G degradation pathways. Here, we report for the first time the time-resolved spectroscopy study on the G reaction dynamics in triplex DNA together with the Fourier transform infrared characterization of steady-state products, from which structural effects on the reactivity of G are unraveled. For an antiparallel triplex-containing GGC motif, G mainly suffers from fast deprotonation (9.8 ± 0.2) × 10 s, featuring release of both N-H and N-H of G in the third strand directly into bulk water. The much faster and distinct deprotonation behavior compared to the duplex should be related to long-resident water spines in the third strand. The G hydration product 8-oxoG is negligible for an antiparallel triplex; instead, the 5-HOO-(G-H) hydroperoxide formed after G deprotonation is identified by its vibrational marker band. In contrast, in a parallel triplex (CGC), the deprotonation of G occurs slowly (6.0 ± 0.3) × 10 s with the release of N-H, while G hydration becomes the major pathway with yields of 8-oxoG larger than in the duplex. The increased positive charge brought by the third strand makes the G radical in the parallel triplex sustain more cation character and prone for hydration. These results indicate that non-B DNA (triplex) plays an important role in DNA damage formation and provide mechanistic insights to rationalize why triplex structures might become hot spots for mutagenesis.

摘要

DNA 暴露于单电子氧化剂最初会导致鸟嘌呤自由基阳离子 (G) 的形成,其可能通过去质子化或水合作用而降解,最终导致链断裂或 8-氧代鸟嘌呤损伤。由于结构通过在靶双链体的大沟中结合第三链而剧烈改变,因此使三链体成为一种有趣的 DNA 结构,可与双链体的 G 降解途径进行检查和比较。在这里,我们首次报道了三链体 DNA 中 G 反应动力学的时间分辨光谱研究,以及稳态产物的傅里叶变换红外特征,从中揭示了结构对 G 反应性的影响。对于包含 GGC 基序的反平行三链体,G 主要经历快速去质子化(9.8 ± 0.2)×10 s,特征是第三链体中 G 的 N-H 和 N-H 直接释放到本体水中。与双链体相比,这种更快且明显的去质子化行为应与第三链体中长驻留的水刺有关。对于反平行三链体,G 的水合产物 8-氧代鸟嘌呤可以忽略不计;相反,在 G 去质子化后形成的 5-HOO-(G-H)过氧化物通过其振动标记带被鉴定。相比之下,在平行三链体 (CGC) 中,G 的去质子化缓慢发生(6.0 ± 0.3)×10 s,伴随着 N-H 的释放,而 G 水合作用成为主要途径,其 8-氧代鸟嘌呤的产率大于双链体。第三链体带来的正电荷增加使平行三链体中的 G 自由基保持更多的阳离子特性并易于水合。这些结果表明非 B DNA(三链体)在 DNA 损伤形成中起着重要作用,并提供了机制上的见解,以解释为什么三链体结构可能成为突变热点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验