School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.
Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia.
Appl Microbiol Biotechnol. 2019 Jul;103(14):5627-5639. doi: 10.1007/s00253-019-09876-y. Epub 2019 May 18.
Accumulation of acetate is a limiting factor in recombinant production of (R)-3-hydroxybutyrate (3HB) by Escherichia coli in high-cell-density processes. To alleviate this limitation, this study investigated two approaches: (i) deletion of phosphotransacetylase (pta), pyruvate oxidase (poxB), and/or the isocitrate lyase regulator (iclR), known to decrease acetate formation, on bioreactor cultivations designed to achieve high 3HB concentrations. (ii) Screening of different E. coli strain backgrounds (B, BL21, W, BW25113, MG1655, W3110, and AF1000) for their potential as low acetate-forming, 3HB-producing platforms. Deletion of pta and pta-poxB in the AF1000 strain background was to some extent successful in decreasing acetate formation, but also dramatically increased excretion of pyruvate and did not result in increased 3HB production in high-cell-density fed-batch cultivations. Screening of the different E. coli strains confirmed BL21 as a low acetate-forming background. Despite low 3HB titers in low-cell-density screening, 3HB-producing BL21 produced five times less acetic acid per mole of 3HB, which translated into a 2.3-fold increase in the final 3HB titer and a 3-fold higher volumetric 3HB productivity over 3HB-producing AF1000 strains in nitrogen-limited fed-batch cultivations. Consequently, the BL21 strain achieved the hitherto highest described volumetric productivity of 3HB (1.52 g L h) and the highest 3HB concentration (16.3 g L) achieved by recombinant E. coli. Screening solely for 3HB titers in low-cell-density batch cultivations would not have identified the potential of this strain, reaffirming the importance of screening with the final production conditions in mind.
在高密度细胞培养过程中,乙酸盐的积累是大肠杆菌(Escherichia coli)重组生产(R)-3-羟基丁酸(3HB)的限制因素。为了缓解这一限制,本研究探讨了两种方法:(i)在生物反应器培养中删除磷酸转乙酰酶(pta)、丙酮酸氧化酶(poxB)和/或异柠檬酸裂解酶调节因子(iclR),已知这些酶可减少乙酸盐的形成,以达到高 3HB 浓度。(ii)筛选不同的大肠杆菌菌株背景(B、BL21、W、BW25113、MG1655、W3110 和 AF1000),以确定其作为低乙酸盐形成、3HB 生产平台的潜力。在 AF1000 菌株背景下删除 pta 和 pta-poxB 在一定程度上成功地减少了乙酸盐的形成,但也显著增加了丙酮酸的排泄,并且在高密度补料分批培养中没有导致 3HB 产量的增加。对不同大肠杆菌菌株的筛选证实 BL21 是一种低乙酸盐形成的背景。尽管在低细胞密度筛选中 3HB 的产率较低,但 3HB 生产 BL21 每摩尔 3HB 产生的乙酸盐少 5 倍,这转化为在氮限制补料分批培养中,最终 3HB 产量增加了 2.3 倍,体积 3HB 生产率提高了 3 倍。因此,BL21 菌株实现了迄今为止描述的最高体积 3HB 生产率(1.52 g L h)和重组大肠杆菌达到的最高 3HB 浓度(16.3 g L)。仅在低细胞密度分批培养中筛选 3HB 的产率不会识别出该菌株的潜力,再次证实了在考虑最终生产条件的情况下筛选的重要性。