Allen Andrew J, Wong-Ng Winnie, Cockayne Eric, Culp Jeffrey T, Matranga Christopher
Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899-8520, USA.
AECOM Corporation, Pittsburgh, PA 15236, USA.
Nanomaterials (Basel). 2019 Mar 4;9(3):354. doi: 10.3390/nano9030354.
This paper reports on the structural basis of CO₂ adsorption in a representative model of flexible metal-organic framework (MOF) material, Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)₄] (NiBpene or PICNIC-60). NiBpene exhibits a CO₂ sorption isotherm with characteristic hysteresis and features on the desorption branch that can be associated with discrete structural changes. Various gas adsorption effects on the structure are demonstrated for CO₂ with respect to N₂, CH₄ and H₂ under static and flowing gas pressure conditions. For this complex material, a combination of crystal structure determination and density functional theory (DFT) is needed to make any real progress in explaining the observed structural transitions during adsorption/desorption. Possible enhancements of CO₂ gas adsorption under supercritical pressure conditions are considered, together with the implications for future exploitation. In situ operando small-angle neutron and X-ray scattering, neutron diffraction and X-ray diffraction under relevant gas pressure and flow conditions are discussed with respect to previous studies, including ex situ, a priori single-crystal X-ray diffraction structure determination. The results show how this flexible MOF material responds structurally during CO₂ adsorption; single or dual gas flow results for structural change remain similar to the static (Sieverts) adsorption case, and supercritical CO₂ adsorption results in enhanced gas uptake. Insights are drawn for this representative flexible MOF with implications for future flexible MOF sorbent design.
本文报道了在一种具有代表性的柔性金属有机框架(MOF)材料Ni(1,2-双(4-吡啶基)乙烯)[Ni(CN)₄](NiBpene或PICNIC-60)中CO₂吸附的结构基础。NiBpene表现出具有特征滞后现象的CO₂吸附等温线,并且在解吸支上具有可与离散结构变化相关联的特征。在静态和流动气体压力条件下,展示了CO₂相对于N₂、CH₄和H₂对结构的各种气体吸附效应。对于这种复杂材料,需要结合晶体结构测定和密度泛函理论(DFT),才能在解释吸附/解吸过程中观察到的结构转变方面取得任何实质性进展。考虑了超临界压力条件下CO₂气体吸附可能的增强情况,以及对未来开发的影响。结合先前的研究,包括非原位、先验单晶X射线衍射结构测定,讨论了在相关气体压力和流动条件下的原位操作小角中子和X射线散射、中子衍射和X射线衍射。结果表明了这种柔性MOF材料在CO₂吸附过程中的结构响应;结构变化的单气体或双气体流动结果与静态(西韦茨)吸附情况仍然相似,并且超临界CO₂吸附导致气体吸收增强。从这种具有代表性的柔性MOF中得出了相关见解,对未来柔性MOF吸附剂的设计具有启示意义。