Klein Ryan A, Shulda Sarah, Parilla Philip A, Le Magueres Pierre, Richardson Rachelle K, Morris William, Brown Craig M, McGuirk C Michael
Material, Chemical, and Computational Sciences Directorate, National Renewable Energy Laboratory Golden Colorado 80401 USA.
Center for Neutron Research, National Institute of Standards and Technology Gaithersburg Maryland 20899 USA.
Chem Sci. 2021 Nov 24;12(47):15620-15631. doi: 10.1039/d1sc04618g. eCollection 2021 Dec 8.
Flexible metal-organic frameworks offer a route towards high useable hydrogen storage capacities with minimal swings in pressure and temperature step-shaped adsorption and desorption profiles. Yet, the understanding of hydrogen-induced flexibility in candidate storage materials remains incomplete. Here, we investigate the hydrogen storage properties of a quintessential flexible metal-organic framework, ZIF-7. We use high-pressure isothermal hydrogen adsorption measurements to identify the pressure-temperature conditions of the hydrogen-induced structural transition in ZIF-7. The material displays narrow hysteresis and has a shallow adsorption slope between 100 K and 125 K. To gain mechanistic insight into the cause of the phase transition correlating with stepped adsorption and desorption, we conduct powder neutron diffraction measurements of the D gas-dosed structures at conditions across the phase change. Rietveld refinements of the powder neutron diffraction patterns yield the structures of activated ZIF-7 and of the gas-dosed material in the dense and open phases. The structure of the activated phase of ZIF-7 is corroborated by the structure of the activated phase of the Cd congener, CdIF-13, which we report here for the first time based on single crystal X-ray diffraction measurements. Subsequent Rietveld refinements of the powder patterns for the gas-dosed structure reveal that the primary D adsorption sites in the dense phase form D-arene interactions between adjacent ligands in a sandwich-like adsorption motif. These sites are prevalent in both the dense and the open structure for ZIF-7, and we hypothesize that they play an important role in templating the structure of the open phase. We discuss the implications of our findings for future approaches to rationally tune step-shaped adsorption in ZIF-7, its congeners, and flexible porous adsorbents in general. Lastly, important to the application of flexible frameworks, we show that pelletization of ZIF-7 produces minimal variation in performance.
柔性金属有机框架为实现高可用氢存储容量提供了一条途径,其压力和温度变化极小,具有阶梯状的吸附和解吸曲线。然而,对于候选存储材料中氢诱导的柔性的理解仍不完整。在此,我们研究了典型的柔性金属有机框架ZIF-7的储氢性能。我们使用高压等温氢吸附测量来确定ZIF-7中氢诱导结构转变的压力-温度条件。该材料显示出窄滞后现象,并且在100 K至125 K之间具有浅吸附斜率。为了深入了解与阶梯状吸附和解吸相关的相变原因的机理,我们在相变过程中的各种条件下对D气体掺杂结构进行了粉末中子衍射测量。对粉末中子衍射图谱的Rietveld精修得出了活化的ZIF-7以及致密相和开放相中的气体掺杂材料的结构。ZIF-7活化相的结构通过Cd同系物CdIF-13活化相的结构得到证实,我们在此首次基于单晶X射线衍射测量报告了CdIF-13的结构。随后对气体掺杂结构的粉末图谱进行Rietveld精修,结果表明致密相中的主要D吸附位点在相邻配体之间形成了类似三明治的吸附基序中的D-芳烃相互作用。这些位点在ZIF-7的致密结构和开放结构中都很普遍,我们推测它们在开放相结构的模板化中起重要作用。我们讨论了我们的发现对未来合理调节ZIF-7及其同系物以及一般柔性多孔吸附剂中阶梯状吸附的方法的影响。最后,对于柔性框架的应用很重要的是,我们表明ZIF-7的造粒对性能的影响最小。