Suppr超能文献

基于听觉感知的深度卷积神经网络在水下目标识别中的应用

A Deep Convolutional Neural Network Inspired by Auditory Perception for Underwater Acoustic Target Recognition.

机构信息

School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

Sensors (Basel). 2019 Mar 4;19(5):1104. doi: 10.3390/s19051104.

Abstract

Underwater acoustic target recognition (UATR) using ship-radiated noise faces big challenges due to the complex marine environment. In this paper, inspired by neural mechanisms of auditory perception, a new end-to-end deep neural network named auditory perception inspired Deep Convolutional Neural Network (ADCNN) is proposed for UATR. In the ADCNN model, inspired by the frequency component perception neural mechanism, a bank of multi-scale deep convolution filters are designed to decompose raw time domain signal into signals with different frequency components. Inspired by the plasticity neural mechanism, the parameters of the deep convolution filters are initialized randomly, and the is n learned and optimized for UATR. The n, max-pooling layers and fully connected layers extract features from each decomposed signal. Finally, in fusion layers, features from each decomposed signal are merged and deep feature representations are extracted to classify underwater acoustic targets. The ADCNN model simulates the deep acoustic information processing structure of the auditory system. Experimental results show that the proposed model can decompose, model and classify ship-radiated noise signals efficiently. It achieves a classification accuracy of 81.96%, which is the highest in the contrast experiments. The experimental results show that auditory perception inspired deep learning method has encouraging potential to improve the classification performance of UATR.

摘要

基于听觉感知机制的水声目标识别

水下声目标识别(UATR)面临着复杂海洋环境的巨大挑战。受听觉感知神经机制的启发,本文提出了一种新的端到端深度神经网络,即基于听觉感知机制的深度卷积神经网络(ADCNN),用于 UATR。在 ADCNN 模型中,受频率成分感知神经机制的启发,设计了一组多尺度深度卷积滤波器,将原始时域信号分解为具有不同频率成分的信号。受可塑性神经机制的启发,深度卷积滤波器的参数被随机初始化,并通过学习和优化用于 UATR。n、最大池化层和全连接层从每个分解信号中提取特征。最后,在融合层中,对每个分解信号的特征进行合并,提取深层特征表示,以对水下声目标进行分类。ADCNN 模型模拟了听觉系统的深层声信息处理结构。实验结果表明,所提出的模型可以有效地分解、建模和分类舰船辐射噪声信号。它实现了 81.96%的分类准确率,在对比实验中是最高的。实验结果表明,基于听觉感知的深度学习方法有望提高 UATR 的分类性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad89/6427555/68b14aedb5ac/sensors-19-01104-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验