Suppr超能文献

基于深度学习的用于海岸线监测的水下声数据分类方法综述。

A Survey of Underwater Acoustic Data Classification Methods Using Deep Learning for Shoreline Surveillance.

机构信息

Department of Electrical and Electronics Engineering, Centro Universitário FEI, Sao Bernardo do Campo 09850-901, SP, Brazil.

Department of Computer Vision, Instituto de Pesquisas Eldorado, Campinas 13083-898, SP, Brazil.

出版信息

Sensors (Basel). 2022 Mar 11;22(6):2181. doi: 10.3390/s22062181.

Abstract

This paper presents a comprehensive overview of current deep-learning methods for automatic object classification of underwater sonar data for shoreline surveillance, concentrating mostly on the classification of vessels from passive sonar data and the identification of objects of interest from active sonar (such as minelike objects, human figures or debris of wrecked ships). Not only is the contribution of this work to provide a systematic description of the state of the art of this field, but also to identify five main ingredients in its current development: the application of deep-learning methods using convolutional layers alone; deep-learning methods that apply biologically inspired feature-extraction filters as a preprocessing step; classification of data from frequency and time-frequency analysis; methods using machine learning to extract features from original signals; and transfer learning methods. This paper also describes some of the most important datasets cited in the literature and discusses data-augmentation techniques. The latter are used for coping with the scarcity of annotated sonar datasets from real maritime missions.

摘要

本文全面介绍了当前用于水下声纳数据自动目标分类的深度学习方法,主要集中于对被动声纳数据中的船只进行分类,以及对主动声纳(如类雷体、人体或沉船碎片等感兴趣的目标)进行识别。这项工作的贡献不仅在于提供了该领域的最新技术的系统描述,而且还确定了当前发展的五个主要要素:仅使用卷积层的深度学习方法;应用生物启发特征提取滤波器作为预处理步骤的深度学习方法;来自频率和时频分析的数据分类;使用机器学习从原始信号中提取特征的方法;以及迁移学习方法。本文还介绍了文献中引用的一些最重要的数据集,并讨论了数据增强技术。后一种技术用于解决来自实际航海任务的带注释声纳数据集稀缺的问题。

相似文献

3
Modulation Classification of Underwater Communication with Deep Learning Network.基于深度学习网络的水下通信调制分类。
Comput Intell Neurosci. 2019 Apr 1;2019:8039632. doi: 10.1155/2019/8039632. eCollection 2019.
7
A Survey of Deep Learning Techniques for Underwater Image Classification.水下图像分类的深度学习技术综述
IEEE Trans Neural Netw Learn Syst. 2023 Oct;34(10):6968-6982. doi: 10.1109/TNNLS.2022.3143887. Epub 2023 Oct 5.

本文引用的文献

1
A novel approach to port noise characterization using an acoustic camera.使用声相机对港口噪声进行特征描述的新方法。
Sci Total Environ. 2022 Feb 20;808:151903. doi: 10.1016/j.scitotenv.2021.151903. Epub 2021 Nov 24.
4
Bio-Inspired Video Enhancement for Small Moving Target Detection.生物启发的视频增强用于小运动目标检测。
IEEE Trans Image Process. 2021;30:1232-1244. doi: 10.1109/TIP.2020.3043113. Epub 2020 Dec 21.
9
A Survey of Optimization Methods From a Machine Learning Perspective.从机器学习视角看优化方法综述
IEEE Trans Cybern. 2020 Aug;50(8):3668-3681. doi: 10.1109/TCYB.2019.2950779. Epub 2019 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验