Knowles Sonja L, Raja Huzefa A, Wright Allison J, Lee Ann Marie L, Caesar Lindsay K, Cech Nadja B, Mead Matthew E, Steenwyk Jacob L, Ries Laure N A, Goldman Gustavo H, Rokas Antonis, Oberlies Nicholas H
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States.
Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States.
Front Microbiol. 2019 Feb 19;10:285. doi: 10.3389/fmicb.2019.00285. eCollection 2019.
Fungi grow in competitive environments, and to cope, they have evolved strategies, such as the ability to produce a wide range of secondary metabolites. This begs two related questions. First, how do secondary metabolites influence fungal ecology and interspecific interactions? Second, can these interspecific interactions provide a way to "see" how fungi respond, chemically, within a competitive environment? To evaluate these, and to gain insight into the secondary metabolic arsenal fungi possess, we co-cultured , a genetically tractable fungus that produces a suite of mycotoxins, with , a fungus that produces the fungistatic compound and FDA-approved drug, griseofulvin. To monitor and characterize fungal chemistry , we used the droplet-liquid microjunction-surface sampling probe (droplet probe). The droplet probe makes a microextraction at defined locations on the surface of the co-culture, followed by analysis of the secondary metabolite profile via liquid chromatography-mass spectrometry. Using this, we mapped and compared the spatial profiles of secondary metabolites from both fungi in monoculture versus co-culture. predominantly biosynthesized griseofulvin and dechlorogriseofulvin in monoculture. In contrast, under co-culture conditions a deadlock was formed between the two fungi, and biosynthesized the same two secondary metabolites, along with dechloro-5'-hydroxygriseofulvin and 5'-hydroxygriseofulvin, all of which have fungistatic properties, as well as mycotoxins like cytochalasin D and cytochalasin C. In contrast, in co-culture, increased the production of the mycotoxins fumitremorgin B and verruculogen, but otherwise remained unchanged relative to its monoculture. To evaluate that secondary metabolites play an important role in defense and territory establishment, we co-cultured lacking the master regulator of secondary metabolism with . We found that the reduced secondary metabolite biosynthesis of the Δ strain of eliminated the organism's ability to compete in co-culture and led to its displacement by . These results demonstrate the potential of chemical analysis and deletion mutant approaches for shedding light on the ecological roles of secondary metabolites and how they influence fungal ecological strategies; co-culturing may also stimulate the biosynthesis of secondary metabolites that are not produced in monoculture in the laboratory.
真菌生长在竞争激烈的环境中,为了应对这种情况,它们进化出了一些策略,比如能够产生多种次生代谢产物。这就引出了两个相关的问题。第一,次生代谢产物如何影响真菌生态和种间相互作用?第二,这些种间相互作用能否提供一种方式来“观察”真菌在竞争环境中如何进行化学响应?为了评估这些问题,并深入了解真菌所拥有的次生代谢武器库,我们将一种易于进行基因操作且能产生一系列霉菌毒素的真菌与一种能产生抑菌化合物和美国食品药品监督管理局批准药物灰黄霉素的真菌进行了共培养。为了监测和表征真菌化学物质,我们使用了液滴 - 液体微连接 - 表面采样探针(液滴探针)。液滴探针在共培养物表面的特定位置进行微萃取,然后通过液相色谱 - 质谱联用分析次生代谢产物谱。利用这种方法,我们绘制并比较了两种真菌在单培养和共培养条件下次生代谢产物的空间分布图谱。在单培养条件下,主要生物合成灰黄霉素和脱氯灰黄霉素。相比之下,在共培养条件下,两种真菌之间形成了僵局,并且 生物合成了相同的这两种次生代谢产物,以及具有抑菌特性的脱氯 -5'- 羟基灰黄霉素和 5'- 羟基灰黄霉素,还有诸如细胞松弛素 D 和细胞松弛素 C 等霉菌毒素。相比之下,在共培养中, 增加了霉菌毒素烟曲霉震颤素 B 和疣孢菌素的产量,但相对于其单培养情况,其他方面保持不变。为了评估次生代谢产物在防御和领地建立中发挥重要作用,我们将缺乏次生代谢主调控因子的 与 进行了共培养。我们发现, 的 Δ 菌株次生代谢产物生物合成的减少消除了该生物体在共培养中的竞争能力,并导致其被 取代。这些结果证明了 化学分析和缺失突变体方法在揭示次生代谢产物的生态作用以及它们如何影响真菌生态策略方面的潜力;共培养还可能刺激实验室单培养条件下不产生的次生代谢产物的生物合成。