Suppr超能文献

发育性轴突退化需要 TRPV1 依赖性 Ca2+内流。

Developmental Axon Degeneration Requires TRPV1-Dependent Ca Influx.

机构信息

Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.

Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia V1V 1V7, Canada.

出版信息

eNeuro. 2019 Feb 27;6(1). doi: 10.1523/ENEURO.0019-19.2019. eCollection 2019 Jan-Feb.

Abstract

Development of the nervous system relies on a balance between axon and dendrite growth and subsequent pruning and degeneration. The developmental degeneration of dorsal root ganglion (DRG) sensory axons has been well studied in part because it can be readily modeled by removing the trophic support by nerve growth factor (NGF) . We have recently reported that axonal fragmentation induced by NGF withdrawal is dependent on Ca, and here, we address the mechanism of Ca entry required for developmental axon degeneration of mouse embryonic DRG neurons. Our results show that the transient receptor potential vanilloid family member 1 (TRPV1) cation channel plays a critical role mediating Ca influx in DRG axons withdrawn from NGF. We further demonstrate that TRPV1 activation is dependent on reactive oxygen species (ROS) generation that is driven through protein kinase C (PKC) and NADPH oxidase (NOX)-dependent pathways that become active upon NGF withdrawal. These findings demonstrate novel mechanistic links between NGF deprivation, PKC activation, ROS generation, and TRPV1-dependent Ca influx in sensory axon degeneration.

摘要

神经系统的发育依赖于轴突和树突生长以及随后的修剪和退化之间的平衡。背根神经节(DRG)感觉轴突的发育退化在一定程度上得到了很好的研究,部分原因是可以通过去除神经营养因子(NGF)的营养支持来轻易地模拟它。我们最近报道说,NGF 撤出引起的轴突碎片化依赖于 Ca2+,在这里,我们解决了用于介导小鼠胚胎 DRG 神经元发育轴突退化的 Ca2+内流所需的机制。我们的结果表明,瞬时受体电位香草醛家族成员 1(TRPV1)阳离子通道在介导从 NGF 撤出的 DRG 轴突中的 Ca2+内流方面起着关键作用。我们进一步证明,TRPV1 的激活依赖于活性氧(ROS)的产生,这是通过蛋白激酶 C(PKC)和 NADPH 氧化酶(NOX)依赖性途径驱动的,这些途径在 NGF 撤出时变得活跃。这些发现证明了在感觉轴突退化中,NGF 剥夺、PKC 激活、ROS 产生和 TRPV1 依赖性 Ca2+内流之间存在新的机制联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ad7/6399429/0beb1b828d1f/enu001192854r001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验