Danilishin Stefan L, Knyazev Eugene, Voronchev Nikita V, Khalili Farid Ya, Gräf Christian, Steinlechner Sebastian, Hennig Jan-Simon, Hild Stefan
1Institut für Theoretische Physik, Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Callinstraße 38, D-30167 Hannover, Germany.
2SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ United Kingdom.
Light Sci Appl. 2018 May 30;7:11. doi: 10.1038/s41377-018-0004-2. eCollection 2018.
The recent discovery of gravitational waves (GW) by Advanced LIGO (Laser Interferometric Gravitational-wave Observatory) has impressively launched the novel field of gravitational astronomy and allowed us to glimpse exciting objects about which we could previously only speculate. Further sensitivity improvements at the low-frequency end of the detection band of future GW observatories must rely on quantum non-demolition (QND) methods to suppress fundamental quantum fluctuations of the light fields used to readout the GW signal. Here we present a novel concept of how to turn a conventional Michelson interferometer into a QND speed-meter interferometer with coherently suppressed quantum back-action noise. We use two orthogonal polarizations of light and an optical circulator to couple them. We carry out a detailed analysis of how imperfections and optical loss influence the achievable sensitivity. We find that the proposed configuration significantly enhances the low-frequency sensitivity and increases the observable event rate of binary black-hole coalescences in the range of by a factor of up to ~300.
先进激光干涉引力波天文台(Advanced LIGO)最近发现引力波(GW),令人瞩目地开启了引力天文学这一全新领域,使我们得以窥探那些此前只能加以推测的令人兴奋的天体。未来引力波天文台探测频段低频端的灵敏度进一步提升,必须依靠量子非破坏(QND)方法来抑制用于读取引力波信号的光场的基本量子涨落。在此,我们提出一种新颖的概念,即如何将传统的迈克尔逊干涉仪转变为具有相干抑制量子反作用噪声的QND速度计干涉仪。我们利用光的两个正交偏振并通过一个光环行器将它们耦合。我们详细分析了缺陷和光学损耗如何影响可实现的灵敏度。我们发现,所提出的配置显著提高了低频灵敏度,并使双黑洞合并在该范围内的可观测事件率提高了高达约300倍。