Suppr超能文献

基于干涉测量法的凸透镜诱导限制显微镜独立校准,精度可达纳米级。

Standalone interferometry-based calibration of convex lens-induced confinement microscopy with nanoscale accuracy.

作者信息

Morrin Gregory T, Kienle Daniel F, Schwartz Daniel K

机构信息

Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.

出版信息

Analyst. 2019 Apr 8;144(8):2628-2634. doi: 10.1039/c8an02300j.

Abstract

Strongly confined environments (confined dimensions between 1-100 nm) represent unique challenges and opportunities for understanding and manipulating molecular behavior due to the significant effects of electric double layers, high surface-area to volume ratios, and other phenomena at the nanoscale. Convex Lens-induced Confinement (CLiC) can be used to analyze the dynamics of individual molecules or particles confined in a planar slit geometry with continuously varying gap thickness. We describe an interferometry-based method for precise measurement of the slit pore geometry. Specifically, this approach permitted accurate characterization of separation distances as small as 5 nm, with 1 nm precision, without a priori knowledge or assumptions about the contact geometry, as well as a greatly simplified experimental setup that required only a lens, coverslip, and inverted microscope. The interferometry-based measurement of gap height offered a distinct advantage over conventional fluorescent dye-based methods; e.g., accurate interferometric height measurements were made at low gap heights regardless of solution conditions, while the concentration of fluorescent dye was significantly impacted by solution conditions such as ionic strength or pH. The accuracy of the interferometric measurements was demonstrated by comparing the experimentally measured concentration of a charged fluorescent dye as a function of gap thickness with dye concentration profiles calculated using Debye-Hückel theory. Accurate characterization of nanoscale gap thickness will enable researchers to study a variety of practical and biologically relevant systems within the CLiC geometry.

摘要

强受限环境(受限尺寸在1 - 100纳米之间)由于双电层的显著影响、高表面积与体积比以及纳米尺度的其他现象,为理解和操纵分子行为带来了独特的挑战与机遇。凸透镜诱导受限(CLiC)可用于分析单个分子或粒子在具有连续变化间隙厚度的平面狭缝几何结构中的动力学。我们描述了一种基于干涉测量法的精确测量狭缝孔隙几何结构的方法。具体而言,这种方法能够精确表征小至5纳米的分离距离,精度达到1纳米,无需关于接触几何结构的先验知识或假设,并且实验装置大大简化,仅需一个透镜、盖玻片和倒置显微镜。基于干涉测量法的间隙高度测量相对于传统的基于荧光染料的方法具有明显优势;例如,无论溶液条件如何,在低间隙高度下都能进行精确的干涉高度测量,而荧光染料的浓度会受到离子强度或pH值等溶液条件的显著影响。通过将实验测量的带电荧光染料浓度作为间隙厚度的函数与使用德拜 - 休克尔理论计算的染料浓度分布进行比较,证明了干涉测量的准确性。纳米尺度间隙厚度的精确表征将使研究人员能够在CLiC几何结构中研究各种实际的和与生物学相关的系统。

相似文献

2
Diffusive dynamics of charged nanoparticles in convex lens-induced confinement.
Soft Matter. 2022 Jan 26;18(4):832-840. doi: 10.1039/d1sm01554k.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Convex lens-induced confinement for imaging single molecules.
Anal Chem. 2010 Jul 15;82(14):6224-9. doi: 10.1021/ac101041s.
5
Manipulating and Visualizing Molecular Interactions in Customized Nanoscale Spaces.
Anal Chem. 2016 Nov 15;88(22):11100-11107. doi: 10.1021/acs.analchem.6b03149. Epub 2016 Oct 31.
6
Methods To Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes.
PDA J Pharm Sci Technol. 2018 May-Jun;72(3):278-297. doi: 10.5731/pdajpst.2017.007997. Epub 2018 Jan 17.
7
Convex lens-induced nanoscale templating.
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13295-300. doi: 10.1073/pnas.1321089111. Epub 2014 Aug 4.
8
Enhanced Facilitated Diffusion of Membrane-Associating Proteins under Symmetric Confinement.
J Phys Chem Lett. 2022 Apr 7;13(13):2901-2907. doi: 10.1021/acs.jpclett.2c00227. Epub 2022 Mar 25.
9
MicroMegascope based dynamic surface force apparatus.
Nanotechnology. 2019 May 10;30(19):195502. doi: 10.1088/1361-6528/ab02ba. Epub 2019 Jan 29.
10
Thickness of the pre- and post-contact lens tear film measured in vivo by interferometry.
Invest Ophthalmol Vis Sci. 2003 Jan;44(1):68-77. doi: 10.1167/iovs.02-0377.

引用本文的文献

1
Effects of Molecular Weight and Surface Interactions on Polymer Diffusion in Confinement.
ACS Macro Lett. 2023 Feb 21;12(2):221-226. doi: 10.1021/acsmacrolett.3c00015. Epub 2023 Jan 27.
2
Wide-field optical imaging of electrical charge and chemical reactions at the solid-liquid interface.
Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2209955119. doi: 10.1073/pnas.2209955119. Epub 2022 Dec 2.

本文引用的文献

1
High spatial resolution nanoslit SERS for single-molecule nucleobase sensing.
Nat Commun. 2018 Apr 30;9(1):1733. doi: 10.1038/s41467-018-04118-7.
2
Visualizing structure-mediated interactions in supercoiled DNA molecules.
Nucleic Acids Res. 2018 May 18;46(9):4622-4631. doi: 10.1093/nar/gky266.
3
Single Nanochannel-Aptamer-Based Biosensor for Ultrasensitive and Selective Cocaine Detection.
ACS Appl Mater Interfaces. 2018 Jan 17;10(2):2033-2039. doi: 10.1021/acsami.7b16539. Epub 2018 Jan 4.
5
Nanometric Gap Structure with a Fluid Lipid Bilayer for the Selective Transport and Detection of Biological Molecules.
Langmuir. 2016 Aug 9;32(31):7958-64. doi: 10.1021/acs.langmuir.6b01405. Epub 2016 Jul 28.
6
Biomimetic nanochannels based biosensor for ultrasensitive and label-free detection of nucleic acids.
Biosens Bioelectron. 2016 Dec 15;86:194-201. doi: 10.1016/j.bios.2016.06.059. Epub 2016 Jun 20.
7
Development of a platform for single cell genomics using convex lens-induced confinement.
Lab Chip. 2015 Jul 21;15(14):3013-20. doi: 10.1039/c5lc00492f.
8
Inverted critical adsorption of polyelectrolytes in confinement.
Soft Matter. 2015 Jun 14;11(22):4430-43. doi: 10.1039/c5sm00635j.
9
Open-frame system for single-molecule microscopy.
Rev Sci Instrum. 2015 Mar;86(3):033701. doi: 10.1063/1.4913271.
10
Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets.
Anal Chem. 2015 Jan 6;87(1):172-87. doi: 10.1021/ac504180h. Epub 2014 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验