Department of Physics, McGill University, 3600 rue University, Montreal, Canada.
Lab Chip. 2015 Jul 21;15(14):3013-20. doi: 10.1039/c5lc00492f.
We demonstrate a lab-on-a-chip that combines micro/nano-fabricated features with a Convex Lens-Induced Confinement (CLIC) device for the in situ analysis of single cells. A complete cycle of single cell analysis was achieved that includes: cell trapping, cell isolation, lysis, protein digestion, genomic DNA extraction and on-chip genomic DNA linearization. The ability to dynamically alter the flow-cell dimensions using the CLIC method was coupled with a flow-control mechanism for achieving efficient cell trapping, buffer exchange, and loading of long DNA molecules into nanofluidic arrays. Finite element simulation of fluid flow gives rise to optimized design parameters for overcoming the high hydraulic resistance present in the micro/nano-confinement region. By tuning design parameters such as the pressure gradient and CLIC confinement, an efficient on-chip single cell analysis protocol can be obtained. We demonstrate that we can extract Mbp long genomic DNA molecules from a single human lybphoblastoid cell and stretch these molecules in the nanochannels for optical interrogation.
我们展示了一种将微/纳加工特征与凸面镜诱导限制(CLIC)装置相结合的微流控芯片,用于原位分析单细胞。该系统实现了单细胞分析的完整循环,包括:细胞捕获、细胞隔离、裂解、蛋白质消化、基因组 DNA 提取和芯片上基因组 DNA 线性化。通过 CLIC 方法动态改变流动池尺寸的能力与流控机制相结合,实现了高效的细胞捕获、缓冲液交换以及将长 DNA 分子加载到纳流控阵列中。通过对流体流动的有限元模拟,得到了克服微/纳米限制区域中高液压阻力的优化设计参数。通过调整设计参数,如压力梯度和 CLIC 限制,可以获得有效的芯片上单细胞分析方案。我们证明,我们可以从单个人类淋巴母细胞样细胞中提取长达 Mbp 的基因组 DNA 分子,并在纳米通道中拉伸这些分子以进行光学检测。