Luan Pingshan, Oehrlein Gottlieb S
Department of Materials Science and Engineering and the Institute for Research in Electronics and Applied Physics , University of Maryland , College Park , Maryland 20742 , United States.
Langmuir. 2019 Mar 26;35(12):4270-4277. doi: 10.1021/acs.langmuir.9b00316. Epub 2019 Mar 14.
We report on the chemical analysis of ultrathin (10 nm) polymer films using the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) technique based on p-polarized infrared light and two types of enhancing substrates, that is, metallic (Au) and dielectric (Si). We selected low-temperature plasma-treated ∼10 nm thick polystyrene films as a test case for demonstrating the capability of the p-polarized ATR-FTIR, whose performance was further compared with the conventional X-ray photoelectron spectroscopy (XPS) techniques. Although ATR-FTIR cannot be used for quantitatively determining elemental compositions in polymers at which XPS excels, it is able to be operated under nonvacuum conditions and allows the study of hydrogen-containing moieties. By correcting the contact condition between the polymer surface and the ATR prism, the relative concentration of the chemical bonds from different samples can be compared. Because ATR-FTIR and XPS provide complementary information on chemical bonds, their combination provides a powerful approach for studying the chemical composition of polymers.
我们报道了基于p偏振红外光以及两种增强基底(即金属(金)和电介质(硅)),使用衰减全反射傅里叶变换红外光谱(ATR-FTIR)技术对超薄(10纳米)聚合物薄膜进行化学分析的情况。我们选择了经低温等离子体处理的约10纳米厚的聚苯乙烯薄膜作为测试案例,以展示p偏振ATR-FTIR的能力,并将其性能与传统的X射线光电子能谱(XPS)技术进行了进一步比较。尽管ATR-FTIR不能用于定量测定聚合物中XPS擅长的元素组成,但它能够在非真空条件下操作,并允许研究含氢部分。通过校正聚合物表面与ATR棱镜之间的接触条件,可以比较不同样品化学键的相对浓度。由于ATR-FTIR和XPS提供了关于化学键的互补信息,它们的结合为研究聚合物的化学成分提供了一种强大的方法。