Suppr超能文献

用于混合针叶林和阔叶林系统中树木分割与分类的遥感流程

Remote sensing pipeline for tree segmentation and classification in a mixed softwood and hardwood system.

作者信息

McMahon Conor A

机构信息

Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA.

出版信息

PeerJ. 2019 Feb 28;6:e5837. doi: 10.7717/peerj.5837. eCollection 2019.

Abstract

The National Institute of Standards and Technology data science evaluation plant identification challenge is a new periodic competition focused on improving and generalizing remote sensing processing methods for forest landscapes. I created a pipeline to perform three remote sensing tasks. First, a marker-controlled watershed segmentation thresholded by vegetation index and height was performed to identify individual tree crowns within the canopy height model. Second, remote sensing data for segmented crowns was aligned with ground measurements by choosing the set of pairings which minimized error in position and in crown area as predicted by stem height. Third, species classification was performed by reducing the dataset's dimensionality through principle component analysis and then constructing a set of maximum likelihood classifiers to estimate species likelihoods for each tree. Of the three algorithms, the classification routine exhibited the strongest relative performance, with the segmentation algorithm performing the least well.

摘要

美国国家标准与技术研究院数据科学评估植物识别挑战赛是一项新的定期竞赛,重点在于改进和推广针对森林景观的遥感处理方法。我创建了一个管道来执行三项遥感任务。首先,执行由植被指数和高度阈值化的标记控制分水岭分割,以在树冠高度模型内识别单个树冠。其次,通过选择使茎高预测的位置和树冠面积误差最小化的配对集,将分割树冠的遥感数据与地面测量数据对齐。第三,通过主成分分析降低数据集的维度,然后构建一组最大似然分类器来估计每棵树的物种可能性,从而进行物种分类。在这三种算法中,分类程序表现出最强的相对性能,而分割算法表现最差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验