Suppr超能文献

利用高光谱和激光雷达数据进行单木树冠 delineation 和树种分类。 (注:“delineation”可能有误,推测可能是“delineation”,意为“描绘、划定” ,结合语境这里可能想说“单木树冠描绘” )

Individual tree crown delineation and tree species classification with hyperspectral and LiDAR data.

作者信息

Dalponte Michele, Frizzera Lorenzo, Gianelle Damiano

机构信息

Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italia.

出版信息

PeerJ. 2019 Jan 11;6:e6227. doi: 10.7717/peerj.6227. eCollection 2019.

Abstract

An international data science challenge, called National Ecological Observatory Network-National Institute of Standards and Technology data science evaluation, was set up in autumn 2017 with the goal to improve the use of remote sensing data in ecological applications. The competition was divided into three tasks: (1) individual tree crown (ITC) delineation, for identifying the location and size of individual trees; (2) alignment between field surveyed trees and ITCs delineated on remote sensing data; and (3) tree species classification. In this paper, the methods and results of team Fondazione Edmund Mach (FEM) are presented. The ITC delineation (Task 1 of the challenge) was done using a region growing method applied to a near-infrared band of the hyperspectral images. The optimization of the parameters of the delineation algorithm was done in a supervised way on the basis of the Jaccard score using the training set provided by the organizers. The alignment (Task 2) between the delineated ITCs and the field surveyed trees was done using the Euclidean distance among the position, the height, and the crown radius of the ITCs and the field surveyed trees. The classification (Task 3) was performed using a support vector machine classifier applied to a selection of the hyperspectral bands and the canopy height model. The selection of the bands was done using the sequential forward floating selection method and the Jeffries Matusita distance. The results of the three tasks were very promising: team FEM ranked first in the data science competition in Task 1 and 2, and second in Task 3. The Jaccard score of the delineated crowns was 0.3402, and the results showed that the proposed approach delineated both small and large crowns. The alignment was correctly done for all the test samples. The classification results were good (overall accuracy of 88.1%, kappa accuracy of 75.7%, and mean class accuracy of 61.5%), although the accuracy was biased toward the most represented species.

摘要

2017年秋季发起了一项名为“国家生态观测站网络 - 美国国家标准与技术研究院数据科学评估”的国际数据科学挑战赛,旨在提高遥感数据在生态应用中的使用效率。该竞赛分为三项任务:(1)单木树冠(ITC) delineation,用于识别单棵树木的位置和大小;(2)实地测量树木与遥感数据上 delineated 的ITC之间的对齐;(3)树种分类。本文介绍了埃德蒙·马赫基金会(FEM)团队的方法和结果。ITC delineation(挑战赛的任务1)使用应用于高光谱图像近红外波段的区域生长方法完成。基于组织者提供的训练集,使用杰卡德分数以监督方式对 delineation 算法的参数进行了优化。使用ITC和实地测量树木的位置、高度和树冠半径之间的欧几里得距离完成了 delineated 的ITC与实地测量树木之间的对齐(任务2)。分类(任务3)使用应用于选定高光谱波段和冠层高度模型的支持向量机分类器进行。波段选择使用顺序前向浮动选择方法和杰弗里斯 - 马图斯伊塔距离完成。三项任务的结果非常可观:FEM团队在任务1和2的数据科学竞赛中排名第一,在任务3中排名第二。 delineated 树冠的杰卡德分数为0.3402,结果表明所提出的方法 delineated 了小树冠和大树冠。所有测试样本的对齐均正确完成。分类结果良好(总体准确率为88.1%,卡帕准确率为75.7%,平均类别准确率为61.5%),尽管准确率偏向于最具代表性的物种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72d/6330952/07db9baf1361/peerj-07-6227-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验