Suppr超能文献

酶促化学合成支化糖聚合物刷作为凝集素特异性结合的人工糖萼。

Chemoenzymatic Synthesis of Branched Glycopolymer Brushes as the Artificial Glycocalyx for Lectin Specific Binding.

出版信息

Langmuir. 2019 Apr 2;35(13):4445-4452. doi: 10.1021/acs.langmuir.8b03704. Epub 2019 Mar 18.

Abstract

The artificial glycocalyx fabricated by carbohydrates is of interest because it provides a platform to simulate the cell membranes that widely exist in the nature, and thus enable extensive applications to be implantable in bioengineering. Here, we present a green strategy combining two polymerization techniques, surface-initiated atom transfer radical polymerization (SI-ATRP) and enzyme-catalyzed elongation of polysaccharide, for fabricating densely packed branched glycopolymer brushes on the gold surface as the artificial glycocalyx. In this strategy, SI-ATRP is first performed to graft a linear polymer chain for anchoring maltose, which can be used as an enzyme acceptor for dextransucrase (DSase). Under DSase, a branched polysaccharide is efficiently formed through elongation of a sucrose substrate. Undoubtedly, enzymatic transglycosylation has unique advantages, such as being green, regio-, and stereo-selective, etc. The process of DSase-catalyzed polysaccharide is well monitored by a quartz crystal microbalance, and the grafting density of the glycopolymer brushes is estimated to be 0.7 chain nm with 23.0 nm dry thickness. The polysaccharide brushes display a branched structure consisting of α-d-glucose residues with 5% of α-1,3-linked shorter chain branches, and the branched structure is well characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, Fourier transform infrared/mirror reflection, water contact angle analysis, and atomic force microscopy. Compared with the linear maltose-anchored brushes, the branched glycopolymer analog prepared here shows high specific binding capacity of concanavalin A recognition, which should be of use in biomedical application.

摘要

基于糖分子构建的人工糖萼具有重要的研究意义,因为它为模拟自然界中广泛存在的细胞膜提供了一个平台,从而使广泛的应用能够在生物工程中得以实现。在这里,我们提出了一种绿色策略,结合两种聚合技术,即表面引发原子转移自由基聚合(SI-ATRP)和酶促多糖延伸,在金表面上制备密集排列的支化糖聚合物刷作为人工糖萼。在该策略中,首先进行 SI-ATRP 接枝线性聚合物链以锚定麦芽糖,麦芽糖可作为葡聚糖蔗糖酶(DSase)的酶受体。在 DSase 作用下,通过蔗糖底物的延伸高效地形成支化多糖。毫无疑问,酶转糖苷反应具有独特的优势,如绿色、区域和立体选择性等。通过石英晶体微天平很好地监测了 DSase 催化多糖的过程,并且估计糖聚合物刷的接枝密度为 0.7 链 nm,干燥厚度为 23.0 nm。多糖刷显示由α-d-葡萄糖残基组成的支化结构,其中 5%的α-1,3-连接的较短链支化,支化结构通过 X 射线光电子能谱、飞行时间二次离子质谱、傅里叶变换红外/镜反射、水接触角分析和原子力显微镜得到了很好的表征。与线性麦芽糖锚定刷相比,这里制备的支化糖聚合物类似物表现出高的伴刀豆球蛋白 A 识别的特异性结合能力,这在生物医学应用中应该是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验