Regalia Giulia, Onorati Francesco, Lai Matteo, Caborni Chiara, Picard Rosalind W
Empatica, Milan, Italy; Empatica, Cambridge, MA, USA.
Empatica, Milan, Italy; Empatica, Cambridge, MA, USA.
Epilepsy Res. 2019 Jul;153:79-82. doi: 10.1016/j.eplepsyres.2019.02.007. Epub 2019 Feb 27.
Wearable automated seizure detection devices offer a high potential to improve seizure management, through continuous ambulatory monitoring, accurate seizure counts, and real-time alerts for prompt intervention. More importantly, these devices can be a life-saving help for people with a higher risk of sudden unexpected death in epilepsy (SUDEP), especially in case of generalized tonic-clonic seizures (GTCS). The Embrace and E4 wristbands (Empatica) are the first commercially available multimodal wristbands that were designed to sense the physiological hallmarks of ongoing GTCS: while Embrace only embeds a machine learning-based detection algorithm, both E4 and Embrace devices are equipped with motion (accelerometers, ACC) and electrodermal activity (EDA) sensors and both the devices received medical clearance (E4 from EU CE, Embrace from EU CE and US FDA). The aim of this contribution is to provide updated evidence of the effectiveness of GTCS detection and monitoring relying on the combination of ACM and EDA sensors. A machine learning algorithm able to recognize ACC and EDA signatures of GTCS-like events has been developed on E4 data, labeled using gold-standard video-EEG examined by epileptologists in clinical centers, and has undergone continuous improvement. While keeping an elevated sensitivity to GTCS (92-100%), algorithm improvements and growing data availability led to lower false alarm rate (FAR) from the initial ˜2 down to 0.2-1 false alarms per day, as showed by retrospective and prospective analyses in inpatient settings. Algorithm adjustment to better discriminate real-life physical activities from GTCS, has brought the initial FAR of ˜6 on outpatient real life settings, down to values comparable to best-case clinical settings (FAR < 0.5), with comparable sensitivity. Moreover, using multimodal sensing, it has been possible not only to detect GTCS but also to quantify seizure-induced autonomic dysfunction, based on automatic features of abnormal motion and EDA. The latter biosignal correlates with the duration of post-ictal generalized EEG suppression, a biomarker observed in 100% of monitored SUDEP cases.
可穿戴式自动癫痫发作检测设备具有通过持续动态监测、准确的癫痫发作计数以及实时警报以进行及时干预来改善癫痫发作管理的巨大潜力。更重要的是,这些设备对于癫痫患者中突发意外死亡(SUDEP)风险较高的人群可能是救命的帮助,尤其是在全身强直阵挛发作(GTCS)的情况下。Embrace和E4腕带(Empatica)是首批商业上可用的多模式腕带,旨在感知正在发生的GTCS的生理特征:虽然Embrace仅嵌入基于机器学习的检测算法,但E4和Embrace设备都配备了运动(加速度计,ACC)和皮肤电活动(EDA)传感器,并且这两种设备都获得了医疗许可(E4获得欧盟CE认证,Embrace获得欧盟CE认证和美国FDA认证)。本研究的目的是提供基于加速度计和皮肤电活动传感器组合的GTCS检测和监测有效性的最新证据。一种能够识别类似GTCS事件的ACC和EDA特征的机器学习算法已根据E4数据开发出来,这些数据使用临床中心癫痫专家检查的金标准视频脑电图进行标记,并且该算法一直在持续改进。虽然对GTCS保持较高的敏感性(92 - 100%),但算法的改进和数据可用性的增加导致误报率(FAR)从最初的每天约2次降低到每天0.2 - 1次误报,住院环境中的回顾性和前瞻性分析表明了这一点。算法调整以更好地区分现实生活中的身体活动和GTCS,已使门诊现实生活环境中最初约6次的FAR降低到与最佳临床环境相当的值(FAR < 0.5),同时敏感性相当。此外,使用多模式传感,不仅有可能检测GTCS,还能根据异常运动和EDA的自动特征来量化癫痫发作引起的自主神经功能障碍。后一种生物信号与发作后全身性脑电图抑制的持续时间相关,这是在100%监测的SUDEP病例中观察到的一种生物标志物。