文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于捕获癫痫发作预测所需实时健康数据的数字干预措施:形成性共同设计和可用性研究的方案(ATMOSPHERE 研究)。

A Digital Intervention for Capturing the Real-Time Health Data Needed for Epilepsy Seizure Forecasting: Protocol for a Formative Co-Design and Usability Study (The ATMOSPHERE Study).

机构信息

School of Engineering Mathematics and Technology, University of Bristol, Bristol, United Kingdom.

School of Computing, Ulster University, Belfast, Ireland.

出版信息

JMIR Res Protoc. 2024 Sep 19;13:e60129. doi: 10.2196/60129.


DOI:10.2196/60129
PMID:39298757
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11450351/
Abstract

BACKGROUND: Epilepsy is a chronic neurological disorder affecting individuals globally, marked by recurrent and apparently unpredictable seizures that pose significant challenges, including increased mortality, injuries, and diminished quality of life. Despite advancements in treatments, a significant proportion of people with epilepsy continue to experience uncontrolled seizures. The apparent unpredictability of these events has been identified as a major concern for people with epilepsy, highlighting the need for innovative seizure forecasting technologies. OBJECTIVE: The ATMOSPHERE study aimed to develop and evaluate a digital intervention, using wearable technology and data science, that provides real-time, individualized seizure forecasting for individuals living with epilepsy. This paper reports the protocol for one of the workstreams focusing on the design and testing of a prototype to capture real-time input data needed for predictive modeling. The first aim was to collaboratively design the prototype (work completed). The second aim is to conduct an "in-the-wild" study to assess usability and refine the prototype (planned research). METHODS: This study uses a person-based approach to design and test the usability of a prototype for real-time seizure precipitant data capture. Phase 1 (work completed) involved co-design with individuals living with epilepsy and health care professionals. Sessions explored users' requirements for the prototype, followed by iterative design of low-fidelity, static prototypes. Phase 2 (planned research) will be an "in-the-wild" usability study involving the deployment of a mid-fidelity, functional prototype for 4 weeks, with the collection of mixed methods usability data to assess the prototype's real-world application, feasibility, acceptability, and engagement. This phase involves primary participants (adults diagnosed with epilepsy) and, optionally, their nominated significant other. The usability study will run in 3 rounds of deployment and data collection, aiming to recruit 5 participants per round, with prototype refinement between rounds. RESULTS: The phase-1 co-design study engaged 22 individuals, resulting in the development of a mid-fidelity, functional prototype based on identified requirements, including the tracking of evidence-based and personalized seizure precipitants. The upcoming phase-2 usability study is expected to provide insights into the prototype's real-world usability, identify areas for improvement, and refine the technology for future development. The estimated completion date of phase 2 is the last quarter of 2024. CONCLUSIONS: The ATMOSPHERE study aims to make a significant step forward in epilepsy management, focusing on the development of a user-centered, noninvasive wearable device for seizure forecasting. Through a collaborative design process and comprehensive usability testing, this research aims to address the critical need for predictive seizure forecasting technologies, offering a promising approach to improving the lives of individuals with epilepsy. By leveraging predictive analytics and personalized machine learning models, this technology seeks to offer a novel approach to managing epilepsy, potentially improving clinical outcomes, including quality of life, through increased predictability and seizure management. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/60129.

摘要

背景:癫痫是一种影响全球人群的慢性神经系统疾病,其特征是反复发作且明显不可预测的癫痫发作,这些发作带来了重大挑战,包括死亡率增加、受伤和生活质量下降。尽管治疗方法有所进步,但仍有相当一部分癫痫患者的癫痫发作无法得到控制。这些事件的明显不可预测性已被确定为癫痫患者的主要关注点,这凸显了创新癫痫发作预测技术的必要性。

目的:“ATMOSPHERE”研究旨在开发和评估一种数字干预措施,使用可穿戴技术和数据科学,为患有癫痫的个体提供实时、个性化的癫痫发作预测。本文报告了其中一个工作流程的方案,该工作流程侧重于设计和测试原型,以捕获用于预测建模的实时输入数据。第一个目标是共同设计原型(已完成)。第二个目标是进行“野外”研究,以评估可用性并改进原型(计划中的研究)。

方法:本研究采用基于个体的方法来设计和测试用于实时癫痫发作诱发因素数据捕获的原型的可用性。第 1 阶段(已完成)涉及与癫痫患者和医疗保健专业人员共同设计。这些会议探讨了用户对原型的需求,然后对低保真静态原型进行迭代设计。第 2 阶段(计划中的研究)将是一项“野外”可用性研究,涉及部署具有中保真功能的原型 4 周,并收集混合方法可用性数据,以评估原型在现实世界中的应用、可行性、可接受性和参与度。这一阶段涉及主要参与者(被诊断患有癫痫的成年人),并可选地涉及他们指定的重要他人。可用性研究将分三轮进行部署和数据收集,每轮目标是招募 5 名参与者,在轮与轮之间对原型进行改进。

结果:第 1 阶段的共同设计研究共纳入了 22 名参与者,根据确定的需求开发了一个中保真、功能原型,包括对基于证据和个性化的癫痫发作诱发因素的跟踪。即将进行的第 2 阶段可用性研究预计将提供有关原型在现实世界中可用性的深入了解,确定需要改进的领域,并改进技术以供未来开发。第 2 阶段预计完成日期为 2024 年最后一个季度。

结论:“ATMOSPHERE”研究旨在在癫痫管理方面取得重大进展,专注于开发一种以用户为中心的非侵入性可穿戴设备,用于癫痫发作预测。通过协作设计过程和全面的可用性测试,本研究旨在满足对预测性癫痫发作预测技术的迫切需求,为改善癫痫患者的生活提供了一种有前景的方法。通过利用预测分析和个性化机器学习模型,该技术旨在为管理癫痫提供一种新方法,通过提高预测能力和癫痫管理,有可能改善临床结果,包括生活质量。

国际注册报告标识符(IRRID):DERR1-10.2196/60129。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6345/11450351/dc7d8eba47e9/resprot_v13i1e60129_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6345/11450351/70192cbfb009/resprot_v13i1e60129_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6345/11450351/dc7d8eba47e9/resprot_v13i1e60129_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6345/11450351/70192cbfb009/resprot_v13i1e60129_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6345/11450351/dc7d8eba47e9/resprot_v13i1e60129_fig2.jpg

相似文献

[1]
A Digital Intervention for Capturing the Real-Time Health Data Needed for Epilepsy Seizure Forecasting: Protocol for a Formative Co-Design and Usability Study (The ATMOSPHERE Study).

JMIR Res Protoc. 2024-9-19

[2]
Remote and Long-Term Self-Monitoring of Electroencephalographic and Noninvasive Measurable Variables at Home in Patients With Epilepsy (EEG@HOME): Protocol for an Observational Study.

JMIR Res Protoc. 2021-3-19

[3]
Enhancing Caregiver Empowerment Through the Story Mosaic System: Human-Centered Design Approach for Visualizing Older Adult Life Stories.

JMIR Aging. 2023-11-8

[4]
Patient and caregiver preferences for the potential benefits and risks of a seizure forecasting device: A best-worst scaling.

Epilepsy Behav. 2019-5-29

[5]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[6]
Adapting and Evaluating an AI-Based Chatbot Through Patient and Stakeholder Engagement to Provide Information for Different Health Conditions: Master Protocol for an Adaptive Platform Trial (the MARVIN Chatbots Study).

JMIR Res Protoc. 2024-2-13

[7]
Seizure forecasting and cyclic control of seizures.

Epilepsia. 2021-2

[8]
Mobile App Prototype in Older Adults for Postfracture Acute Pain Management: User-Centered Design Approach.

JMIR Aging. 2022-10-17

[9]
Epileptic seizure forecasting with wearable-based nocturnal sleep features.

Epilepsia Open. 2024-10

[10]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

本文引用的文献

[1]
Public involvement and engagement in scientific research and higher education: the only way is ethics?

Res Involv Engagem. 2024-5-31

[2]
[Incidence of sudden death in epilepsy (SUDEP): update and limitations].

Nervenarzt. 2024-6

[3]
A systematic literature review on the global epidemiology of Dravet syndrome and Lennox-Gastaut syndrome: Prevalence, incidence, diagnosis, and mortality.

Epilepsia. 2024-5

[4]
A Comprehensive Review of Emerging Trends and Innovative Therapies in Epilepsy Management.

Brain Sci. 2023-9-11

[5]
Forecasting seizure likelihood from cycles of self-reported events and heart rate: a prospective pilot study.

EBioMedicine. 2023-7

[6]
The burden of epilepsy and unmet need in people with focal seizures.

Brain Behav. 2022-9

[7]
Seizure forecasting using minimally invasive, ultra-long-term subcutaneous electroencephalography: Individualized intrapatient models.

Epilepsia. 2023-12

[8]
Seizure Forecasting: Patient and Caregiver Perspectives.

Front Neurol. 2021-9-20

[9]
Machine learning from wristband sensor data for wearable, noninvasive seizure forecasting.

Epilepsia. 2020-12

[10]
Seizure forecasting and cyclic control of seizures.

Epilepsia. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索