Suppr超能文献

可解释人工智能在可穿戴式癫痫记录中的应用:数据质量、患者年龄和抗癫痫药物对性能的影响。

Explainable AI for wearable seizure logging: Impact of data quality, patient age, and antiseizure medication on performance.

机构信息

Computational Neurology Lab, Department of Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.

Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, United States.

出版信息

Seizure. 2023 Aug;110:99-108. doi: 10.1016/j.seizure.2023.06.002. Epub 2023 Jun 8.

Abstract

OBJECTIVE

Objective seizure count estimates are crucial for ambulatory epilepsy management. Wearables have shown promise for the detection of tonic-clonic seizures but may suffer from false alarms and undetected seizures. Seizure signatures recorded by wearables often occur over prolonged periods, including increased levels of electrodermal activity and heart rate long after seizure EEG onset, however, previous detection methods only partially exploited these signatures. Understanding the utility of these prolonged signatures for seizure count estimation and what factors generally determine seizure logging performance, including the role of data quality vs. algorithm performance, is thus crucial for improving wearables-based epilepsy monitoring and determining which patients benefit most from this technology.

METHODS

In this retrospective study we examined 76 pediatric epilepsy patients during multiday video-EEG monitoring equipped with a wearable (Empatica E4; records of electrodermal activity, EDA, accelerometry, ACC, heart rate, HR; 1983 h total recording time; 45 tonic-clonic seizures). To log seizures on prolonged data trends, we applied deep learning on continuous overlapping 1-hour segments of multimodal data in a leave-one-subject-out approach. We systematically examined factors influencing logging performance, including patient age, antiseizure medication (ASM) load, seizure type and duration, and data artifacts. To gain insights into algorithm function and feature importance we applied Uniform Manifold Approximation and Projection (UMAP, to represent the separability of learned features) and SHapley Additive exPlanations (SHAP, to represent the most informative data signatures).

RESULTS

Performance for tonic-clonic seizure logging increased systematically with patient age (AUC 0.61 for patients 〈 11 years, AUC 0.77 for patients between 11-15 years, AUC 0.85 for patients 〉 15 years). Across all ages, AUC was 0.75 corresponding to a sensitivity of 0.52 and a false alarm rate of 0.28/24 h. Seizures under high ASM load or with shorter duration were detected worse (P=.025, P=.033, respectively). UMAP visualized discriminatory power at the individual patient level, SHAP analyses identified clonic motor activity and peri/postictal increases in HR and EDA as most informative. In contrast, in missed seizures, these features were absent indicating that recording quality but not the algorithm caused the low sensitivity in these patients.

SIGNIFICANCE

Our results demonstrate the utility of prolonged, postictal data segments for seizure logging, contribute to algorithm explainability and point to influencing factors, including high ASM dose and short seizure duration. Collectively, these results may help to identify patients who particularly benefit from such technology.

摘要

目的

客观的癫痫发作次数估计对于癫痫的管理至关重要。可穿戴设备在检测强直-阵挛性发作方面显示出了潜力,但可能会有误报和未检测到的发作。可穿戴设备记录的癫痫发作特征通常会持续很长时间,包括在癫痫 EEG 发作后很长时间内出现的皮肤电活动和心率水平升高,但之前的检测方法仅部分利用了这些特征。了解这些长时间的特征对癫痫发作次数估计的有用性以及通常哪些因素决定癫痫发作的记录性能,包括数据质量与算法性能的作用,对于改善基于可穿戴设备的癫痫监测以及确定哪些患者最受益于该技术至关重要。

方法

在这项回顾性研究中,我们对 76 名儿科癫痫患者在配备可穿戴设备(Empatica E4;记录皮肤电活动、EDA、加速度计、ACC、心率、HR;总记录时间 1983 小时;45 例强直-阵挛性发作)的多日视频-EEG 监测期间进行了检查。为了在长时间的趋势数据上记录癫痫发作,我们在一个逐个受试者的方法中,应用深度学习对多模态数据的连续重叠 1 小时段进行分析。我们系统地检查了影响记录性能的因素,包括患者年龄、抗癫痫药物(ASM)负荷、发作类型和持续时间以及数据伪影。为了深入了解算法功能和特征重要性,我们应用了一致流形逼近和投影(UMAP,用于表示学习特征的可分离性)和 Shapley 加性解释(SHAP,用于表示最具信息量的数据特征)。

结果

强直-阵挛性癫痫发作记录的性能随着患者年龄的增长而系统地提高(〈 11 岁的患者 AUC 为 0.61,11-15 岁的患者 AUC 为 0.77,〉 15 岁的患者 AUC 为 0.85)。在所有年龄段,AUC 为 0.75,对应于 0.52 的敏感性和 0.28/24 h 的假警报率。ASM 负荷高或发作持续时间短的癫痫发作被检测到的效果较差(P=.025,P=.033)。UMAP 以个体患者的水平可视化了区分能力,SHAP 分析确定了阵挛性运动活动以及发作间期和发作后的心率和 EDA 升高是最具信息量的特征。相比之下,在漏诊的发作中,这些特征缺失,这表明是记录质量而不是算法导致了这些患者的低敏感性。

意义

我们的结果证明了长时间、发作后的数据段对癫痫发作记录的有用性,有助于算法的可解释性,并指出了影响因素,包括高 ASM 剂量和短发作持续时间。总的来说,这些结果可能有助于确定哪些患者特别受益于这种技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验