Matheny Matthew H, Emenheiser Jeffrey, Fon Warren, Chapman Airlie, Salova Anastasiya, Rohden Martin, Li Jarvis, Hudoba de Badyn Mathias, Pósfai Márton, Duenas-Osorio Leonardo, Mesbahi Mehran, Crutchfield James P, Cross M C, D'Souza Raissa M, Roukes Michael L
Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.
Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125, USA.
Science. 2019 Mar 8;363(6431). doi: 10.1126/science.aav7932.
Synchronization of oscillators, a phenomenon found in a wide variety of natural and engineered systems, is typically understood through a reduction to a first-order phase model with simplified dynamics. Here, by exploiting the precision and flexibility of nanoelectromechanical systems, we examined the dynamics of a ring of quasi-sinusoidal oscillators at and beyond first order. Beyond first order, we found exotic states of synchronization with highly complex dynamics, including weak chimeras, decoupled states, traveling waves, and inhomogeneous synchronized states. Through theory and experiment, we show that these exotic states rely on complex interactions emerging out of networks with simple linear nearest-neighbor coupling. This work provides insight into the dynamical richness of complex systems with weak nonlinearities and local interactions.
振荡器的同步是一种在各种各样的自然和工程系统中都能发现的现象,通常通过简化为具有简化动力学的一阶相位模型来理解。在这里,通过利用纳米机电系统的精度和灵活性,我们研究了一阶及更高阶的准正弦振荡器环的动力学。在一阶以上,我们发现了具有高度复杂动力学的奇异同步状态,包括弱奇异态、解耦态、行波和非均匀同步态。通过理论和实验,我们表明这些奇异状态依赖于具有简单线性最近邻耦合的网络中出现的复杂相互作用。这项工作为具有弱非线性和局部相互作用的复杂系统的动力学丰富性提供了见解。