Carter Brittany, Hernandez Uriel F, Miller David J, Blaikie Andrew, Horowitz Viva R, Alemán Benjamín J
Department of Physics, University of Oregon, Eugene, OR 97403, USA.
Physics Department, Hamilton College, Clinton, NY 13323, USA.
Micromachines (Basel). 2023 Nov 16;14(11):2103. doi: 10.3390/mi14112103.
Arrays of coupled nanoelectromechanical resonators are a promising foundation for implementing large-scale network applications, such as mechanical-based information processing and computing, but their practical realization remains an outstanding challenge. In this work, we demonstrate a scalable platform of suspended graphene resonators, such that neighboring resonators are persistently coupled mechanically. We provide evidence of strong coupling between neighboring resonators using two different tuning methods. Additionally, we provide evidence of inter-resonator coupling of higher-order modes, demonstrating the rich dynamics that can be accessed with this platform. Our results establish this platform as a viable option for realizing large-scale programmable networks, enabling applications such as phononic circuits, tunable waveguides, and reconfigurable metamaterials.
耦合纳米机电谐振器阵列是实现大规模网络应用(如基于机械的信息处理和计算)的一个有前景的基础,但它们的实际实现仍然是一个突出的挑战。在这项工作中,我们展示了一个悬浮石墨烯谐振器的可扩展平台,使得相邻谐振器能够持续地进行机械耦合。我们使用两种不同的调谐方法提供了相邻谐振器之间强耦合的证据。此外,我们还提供了高阶模式的谐振器间耦合的证据,证明了通过该平台可以实现丰富的动力学特性。我们的结果将这个平台确立为实现大规模可编程网络的一个可行选择,从而能够实现诸如声子电路、可调谐波导和可重构超材料等应用。