Suppr超能文献

网络和相位对称性表明,振幅动力学使解耦振荡器集群稳定。

Network and Phase Symmetries Reveal That Amplitude Dynamics Stabilize Decoupled Oscillator Clusters.

作者信息

Emenheiser Jeffrey, Salova Anastasiya, Snyder Jordan, Crutchfield James P, D'Souza Raissa M

机构信息

Complexity Sciences Center and Physics, Mathematics, and Computer Science Departments, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.

出版信息

Entropy (Basel). 2025 May 7;27(5):501. doi: 10.3390/e27050501.

Abstract

Oscillator networks display intricate synchronization patterns. Determining their stability typically requires incorporating the symmetries of the network coupling. Going beyond analyses that appeal only to a network's automorphism group, we explore synchronization patterns that emerge from the phase-shift invariance of the dynamical equations and symmetries in the nodes. We show that these nonstructural symmetries simplify stability calculations. We analyze a ring-network of phase-amplitude oscillators that exhibits a "decoupled" state in which physically-coupled nodes appear to act independently due to emergent cancellations in the equations of dynamical evolution. We establish that this state can be linearly stable for a ring of phase-amplitude oscillators, but not for a ring of phase-only oscillators that otherwise require explicit long-range, nonpairwise, or nonphase coupling. In short, amplitude-phase interactions are key to stable synchronization at a distance.

摘要

振荡器网络呈现出复杂的同步模式。确定它们的稳定性通常需要考虑网络耦合的对称性。超越仅诉诸于网络自同构群的分析,我们探索从动力学方程的相移不变性和节点中的对称性中出现的同步模式。我们表明,这些非结构对称性简化了稳定性计算。我们分析了一个相幅振荡器的环形网络,它表现出一种“解耦”状态,在这种状态下,由于动力学演化方程中出现的抵消作用,物理耦合的节点似乎独立行动。我们确定,对于相幅振荡器环,这种状态可以是线性稳定的,但对于仅相位振荡器环则不然,否则需要明确的长程、非成对或非相位耦合。简而言之,幅度-相位相互作用是远距离稳定同步的关键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验