Suppr超能文献

术前CT扫描测量用于预测采用成分分离技术进行复杂腹疝修补术患者的并发症。

Pre-operative CT scan measurements for predicting complications in patients undergoing complex ventral hernia repair using the component separation technique.

作者信息

Winters H, Knaapen L, Buyne O R, Hummelink S, Ulrich D J O, van Goor H, van Geffen E, Slater N J

机构信息

Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.

Department of Surgery, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.

出版信息

Hernia. 2019 Apr;23(2):347-354. doi: 10.1007/s10029-019-01899-8. Epub 2019 Mar 7.

Abstract

BACKGROUND

The component separation technique (CST) is considered an excellent technique for complex ventral hernia repair. However, postoperative infectious complications and reherniation rates are significant. Risk factor analysis for postoperative complication and reherniation has focused mostly on patient history and co-morbidity and shows equivocal results. The use of abdominal morphometrics derived from CT scans to assist in risk assessment seems promising. The aim of this study is to determine the predictability of reherniation and surgical site infections (SSI) using pre-operative CT measurements.

METHODS

Electronic patient records were searched for patients who underwent CST between 2000 and 2013 and had a pre-operative CT scan available. Visceral fat volume (VFV), subcutaneous fat volume (SFV), loss of domain (LOD), rectus thickness and width (RT, RW), abdominal volume, hernia sac volume, total fat volume (TFV), sagittal distance (SD) and waist circumference (WC) were measured or calculated. Relevant variables were entered in multivariate regression analysis to determine their effect on reherniation and SSI as separate outcomes.

RESULTS

Sixty-five patients were included. VFV (p = 0.025, OR = 1.65) was a significant predictor regarding reherniation. Hernia sac volume (p = 0.020, OR = 2.10) and SFV per 1000 cm (p = 0.034, OR = 0.26) were significant predictors of SSI.

CONCLUSION

Visceral fat volume, subcutaneous fat volume and hernia sac volume derived from CT scan measurements may be used to predict reherniation and SSI in patients undergoing complex ventral hernia repair using CST. These findings may aid in optimizing patient-tailored preoperative risk assessment.

摘要

背景

成分分离技术(CST)被认为是复杂腹疝修补的一项出色技术。然而,术后感染性并发症和复发率较高。术后并发症和复发的危险因素分析主要集中在患者病史和合并症方面,结果并不明确。利用CT扫描得出的腹部形态测量学指标辅助风险评估似乎很有前景。本研究的目的是使用术前CT测量来确定复发和手术部位感染(SSI)的可预测性。

方法

检索2000年至2013年间接受CST且有术前CT扫描的患者的电子病历。测量或计算内脏脂肪体积(VFV)、皮下脂肪体积(SFV)、腹腔容积减少(LOD)、腹直肌厚度和宽度(RT、RW)、腹部容积、疝囊容积、总脂肪体积(TFV)、矢状距离(SD)和腰围(WC)。将相关变量纳入多变量回归分析,以确定它们作为独立结果对复发和SSI的影响。

结果

纳入65例患者。VFV(p = 0.025,OR = 1.65)是复发的显著预测因素。疝囊容积(p = 0.020,OR = 2.10)和每1000 cm的SFV(p = 0.034,OR = 0.26)是SSI的显著预测因素。

结论

CT扫描测量得出的内脏脂肪体积、皮下脂肪体积和疝囊容积可用于预测接受CST进行复杂腹疝修补患者的复发和SSI。这些发现可能有助于优化针对患者的术前风险评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/522d/6456480/6f9eae00180c/10029_2019_1899_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验