Lim Hansaim, Xie Lei
The Ph.D. Program in Biochemistry, The Graduate Center, The City University of New York, New York, NY, USA.
Department of Computer Science, Hunter College, The City University of New York, New York, NY, USA.
Methods Mol Biol. 2019;1939:199-214. doi: 10.1007/978-1-4939-9089-4_11.
Systems pharmacology aims to understand drug actions on a multi-scale from atomic details of drug-target interactions to emergent properties of biological network and rationally design drugs targeting an interacting network instead of a single gene. Multifaceted data-driven studies, including machine learning-based predictions, play a key role in systems pharmacology. In such works, the integration of multiple omics data is the key initial step, followed by optimization and prediction. Here, we describe the overall procedures for drug-target association prediction using REMAP, a large-scale off-target prediction tool. The method introduced here can be applied to other relation inference problems in systems pharmacology.
系统药理学旨在从药物-靶点相互作用的原子细节到生物网络的涌现特性等多尺度层面理解药物作用,并合理设计针对相互作用网络而非单个基因的药物。多方面的数据驱动研究,包括基于机器学习的预测,在系统药理学中起着关键作用。在这类研究中,整合多种组学数据是关键的初始步骤,随后是优化和预测。在此,我们描述了使用大规模脱靶预测工具REMAP进行药物-靶点关联预测的总体流程。这里介绍的方法可应用于系统药理学中的其他关系推断问题。