Suppr超能文献

系统药理学的组学数据整合与分析

Omics Data Integration and Analysis for Systems Pharmacology.

作者信息

Lim Hansaim, Xie Lei

机构信息

The Ph.D. Program in Biochemistry, The Graduate Center, The City University of New York, New York, NY, USA.

Department of Computer Science, Hunter College, The City University of New York, New York, NY, USA.

出版信息

Methods Mol Biol. 2019;1939:199-214. doi: 10.1007/978-1-4939-9089-4_11.

Abstract

Systems pharmacology aims to understand drug actions on a multi-scale from atomic details of drug-target interactions to emergent properties of biological network and rationally design drugs targeting an interacting network instead of a single gene. Multifaceted data-driven studies, including machine learning-based predictions, play a key role in systems pharmacology. In such works, the integration of multiple omics data is the key initial step, followed by optimization and prediction. Here, we describe the overall procedures for drug-target association prediction using REMAP, a large-scale off-target prediction tool. The method introduced here can be applied to other relation inference problems in systems pharmacology.

摘要

系统药理学旨在从药物-靶点相互作用的原子细节到生物网络的涌现特性等多尺度层面理解药物作用,并合理设计针对相互作用网络而非单个基因的药物。多方面的数据驱动研究,包括基于机器学习的预测,在系统药理学中起着关键作用。在这类研究中,整合多种组学数据是关键的初始步骤,随后是优化和预测。在此,我们描述了使用大规模脱靶预测工具REMAP进行药物-靶点关联预测的总体流程。这里介绍的方法可应用于系统药理学中的其他关系推断问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验